Sector Area

Area using Degrees =

Area using Radians =

Segment Area

Recall that the area of a triangle is $\frac{1}{2} a b \sin C$ where C is the 'included angle' (i.e. between a and b)

Area using radians:

Examples

1. In the diagram, the area of the minor sector $A O B$ is $28.9 \mathrm{~cm}^{2}$. Given that $\angle A O B=0.8$ radians, calculate the value of r.

2. A plot of land is in the shape of a sector of a circle of radius 55 m . The length of fencing that is erected along the edge of the plot to enclose the land is 176 m . Calculate the area of the plot of land.

3. In the diagram above, $O A B$ is a sector of a circle, radius 4 m . The chord $A B$ is 5 m long. Find the area of the shaded segment.

4. In the diagram, $A B$ is the diameter of a circle of radius $r \mathrm{~cm}$, and $\angle B O C=\theta$ radians. Given that the area of $\triangle A O C$ is three times that of the shaded segment, show that $3 \theta-4 \sin \theta=0$.

Test Your Understanding

6.

Figure 1
Figure 1 shows the sector $O A B$ of a circle with centre O, radius 9 cm and angle 0.7 radians.
(a) Find the length of the $\operatorname{arc} A B$.
(b) Find the area of the sector $O A B$.

The line $A C$ shown in Figure 1 is perpendicular to $O A$, and $O B C$ is a straight line.
(c) Find the length of $A C$, giving your answer to 2 decimal places.

The region H is bounded by the $\operatorname{arc} A B$ and the lines $A C$ and $C B$.
(d) Find the area of H, giving your answer to 2 decimal places.

Extension

[MAT 2012 1J]
If two chords $Q P$ and $R P$ on a circle of radius 1 meet in an angle θ at P, for example as drawn in the diagram on the left, then find the largest possible area of the shaded region $R P Q$, giving your answer in terms of θ.

