U6 Pure Chapter 5

Radians

Course Structure

1: Converting between degrees and radians.

2: Find arc length and sector area (when using radians)

3: Solve trig equations in radians.

4: Small angle approximations

\(\left.$$
\begin{array}{l|l|l|l}\hline 5 & 5.1 & \begin{array}{l}\text { Understand and use the } \\
\text { definitions of sine, cosine } \\
\text { and tangent for all } \\
\text { arguments; }\end{array} & \begin{array}{l}\text { Use of } x \text { and } y \text { coordinates of points } \\
\text { on the unit circle to give cosine and } \\
\text { sine respectively, }\end{array}
$$

the sine and cosine rules;

the area of a triangle in the

form \frac{1}{2} a b \sin C

Work with radian measure,

including the ambiguous case of the

sine rule.\end{array}\right]\)| Use of the formulae $s=r \theta$ and |
| :--- |
| including use for arc length |
| and area of sector. |\quad| $A=\frac{1}{2} r^{2} \theta$ for arc lengths and areas of |
| :--- |
| sectors of a circle. |

Radians

Converting between radians and degrees

$90^{\circ}=$	$135^{\circ}=$
$\frac{\pi}{3}=$	$\frac{3}{2} \pi=$
$45^{\circ}=$	$72^{\circ}=$
$\frac{\pi}{6}=$	$\frac{5 \pi}{6}=$

It is useful to remember the standard angle conversions....
$45^{\circ}=$
$60^{\circ}=$
$270^{\circ}=$
$120^{\circ}=$

Graph Sketching with Radians

-1
$30^{\circ}=$
$135^{\circ}=$
$90^{\circ}=$

Test Your Understanding

Sketch the graph of $y=\cos \left(x+\frac{\pi}{2}\right)$ for $0 \leq x<2 \pi$

