U6 Pure Chapter 5

Radians

Course Structure

- 1: Converting between degrees and radians.
- 2: Find arc length and sector area (when using radians)
- **3**: Solve trig equations in radians.
- 4: Small angle approximations

5 Trigonometry		definitions of sine, cosine and tangent for all arguments;	Use of X and y coordinates of points on the unit circle to give cosine and sine respectively,
		the sine and cosine rules; the area of a triangle in the form $\frac{1}{2}ab\sin C$	including the ambiguous case of the sine rule.
		Work with radian measure, including use for arc length and area of sector.	Use of the formulae $s=r\theta$ and $A=\frac{1}{2}r^2\theta \text{ for arc lengths and areas of}$ sectors of a circle.
	5.2	Understand and use the standard small angle approximations of sine, cosine and tangent $\sin \theta \approx \theta$, $\cos \theta \approx 1 - \frac{\theta^2}{2}$, $\tan \theta \approx \theta$ Where θ is in radians.	Students should be able to approximate, e.g. $\frac{\cos 3x - 1}{x \sin 4x}$ when x is small, to $-\frac{9}{8}$

Radians

Converting between radians and degrees

$$\frac{\pi}{2}$$

$$\frac{3}{2}\pi =$$

$$\frac{\pi}{6}$$

$$\frac{5\pi}{6}$$
 =

It is useful to <u>remember</u> the standard angle conversions....

Graph Sketching with Radians

Test Your Understanding

Sketch the graph of $y = \cos\left(x + \frac{\pi}{2}\right)$ for $0 \le x < 2\pi$