Approximating a Binomial Distribution

If we're going to use a normal distribution to approximate a Binomial distribution, it makes sense that we set the mean and standard deviation of the normal distribution to match that of the original binomial distribution:

$$\mu = \sigma = \sigma$$

 \mathscr{I} If n is large and p close to 0.5, then the binomial distribution $X \sim B(n,p)$ can be approximated by the normal distribution $N(\mu,\sigma^2)$ where

$$\mu = \sigma =$$

Quickfire Questions:

$$X \sim B(10,0.2) \rightarrow Y \sim$$

$$X \sim B(20,0.5) \rightarrow Y \sim$$

$$X \sim B(6,0.3) \rightarrow Y \sim$$

Continuity Corrections

Examples

Discrete	\rightarrow	Continuous
$P(X \le 7)$?
P(X < 10)		?
P(X > 9)		?
$P(1 \le X \le 10)$?
P(3 < X < 6)		?
$P(3 \le X < 6)$?
$P(3 < X \le 6)$?
P(X = 3)		<u>,</u>

Full Example

[Textbook - Edited] For a particular type of flower bulbs, 55% will produce yellow flowers. A random sample of 80 bulbs is planted.

- (a) Calculate the actual probability that there are exactly 50 flowers.
- (b) Use a normal approximation to find a estimate that there are exactly 50 flowers.
- (c) Hence determine the percentage error of the normal approximation for 50 flowers.

Test Your Understanding

Edexcel S2 Jan 2004 Q3

The discrete random variable X is distributed B(n, p).

(a) Write down the value of p that will give the most accurate estimate when approximating the binomial distribution by a normal distribution.

(1)

(b) Give a reason to support your value.

(c) Given that n = 200 and p = 0.48, find $P(90 \le X < 105)$. (7)

(1)