Chapter 3

The Normal Distribution

Chapter Overview

1:: Characteristics of the Normal Distribution

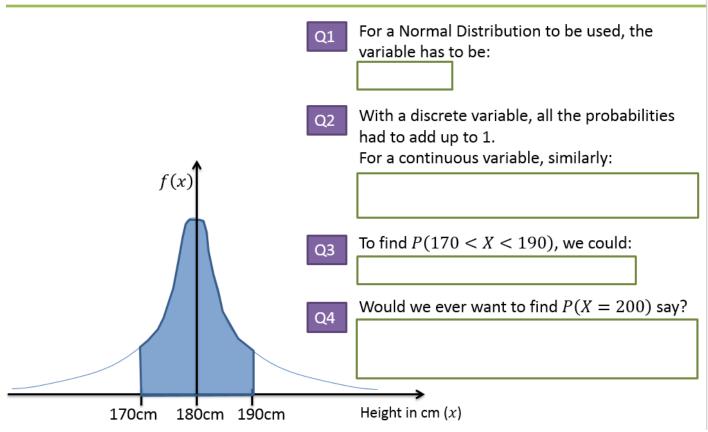
What shape is it? What parameters does it have?

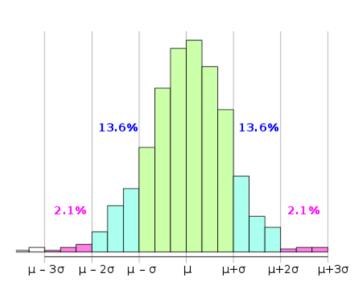
3:: Finding unknown means/standard deviations.

In Wales, 30% of people have a height above 1.6m. Given the mean height is 1.4m and heights are normally distributed, determine the standard deviation of heights. **2**:: Finding probabilities on a standard normal curve.

"Given that IQ is distributed as $X \sim N(100, 15^2)$, determine the probability that a randomly chosen person has an IQ above 130."

How would I approximate $X \sim B(10,0.4)$ using a Normal distribution? Under what conditions can we make such an approximation?


Specification


4.2	Understand and use the Normal distribution as a	The notation $X \sim \mathrm{N}(\mu, \ \sigma^2)$ may be used.
	model; find probabilities	Knowledge of the shape and the
	using the Normal distribution	symmetry of the distribution is required. Knowledge of the probability density function is not required. Derivation of the mean, variance and cumulative
		distribution function is not required.
		Questions may involve the solution of simultaneous equations.
		Students will be expected to use their calculator to find probabilities connected with the normal distribution.
	Link to histograms, mean, standard deviation, points of inflection	Students should know that the points of inflection on the normal curve are at $x = \mu \pm \sigma$.
		The derivation of this result is not expected.
	and the binomial distribution.	Students should know that when <i>n</i> is large and <i>p</i> is close to 0.5 the distribution B(n, p) can be approximated by N(np, np[1 - p])
		The application of a continuity correction is expected.

5:: Hypothesis Testing

The following shows what the probability distribution might look like for a random variable X, if X is the height of a randomly chosen person.

Normal Distribution Q & A

The histogram above is for a quantity which is approximately normally distributed.

You need to memorise this!

∞ ≈ 68%

≈ 95%

≈ 99.7%

For practical purposes we consider all data to lie within $\mu\pm5\sigma$

Examples

[Textbook] The diameters of a rivet produced by a particular machine, X mm, is modelled as $X \sim N(8, 0.2^2)$. Find: a) P(X > 8)b) P(7.8 < X < 8.2) IQ ("Intelligence Quotient") for a given population is, by definition, distributed using $X \sim N(100, 15^2)$. Find: a) P(70 < X < 130)b) P(X > 115)