3A The Normal Distribution

Key Values:

1. The diameters of a rivet produced by a particular machine, $X \mathrm{~mm}$, is modelled as $X \sim N\left(8,0.2^{2}\right)$. Find:
a) $P(X>8)$
b) $\quad P(7.6<X<8.4)$
c) $P(X>7.8)$

3B Finding Probabilities

1. Given that $X \sim N\left(30,4^{2}\right)$, find:
a) $P(X<33)$

b) $P(X \geq 24)$

c) $P(33.5<X<38.2)$
d) $P(X<27$ or $X>32)$

Normal CD
 Lower: 27
 Upper: 32

2. An IQ test is applied to a population of adults. The scores, X, on the test are found to be normally distributed with $X \sim N\left(100,15^{2}\right)$. Adults scoring more that 140 on the test are classified as 'genius'.
a) Find the probability that an adult chosen at random achieves a 'genius' classification
b) Twenty adults take the test. Find the probability that two or more and classified as 'genius'

3C Finding Values From Probabilities (Inverse Function)

1. Given that $X \sim N\left(20,3^{2}\right)$, find, to two decimal places, the values of a such that:
a) $P(X<a)=0.75$

2. 02346874
b) $P(X>a)=0.4$

c) $P(16<X<a)=0.3$

3. Plates made using a particular manufacturing process have a diameter, $D \mathrm{~cm}$, which can be modelled using a normal distribution, $D \sim N\left(20,1.5^{2}\right)$.
a) Given that 60% of plates are less than $x \mathrm{~cm}$, find the value of x.
b) Find the interquartile range of the plate diameters

3D The Normal Normal Distribution (Z Distribution)

1. The random variable $X \sim N\left(50,4^{2}\right)$. Write in terms of $\Phi(z)$ for some value z :
a) $P(X<53)$
b) $P(X \geq 55)$
2. The systolic blood pressure (pressure when the heart beats) of an adult population, $S \mathrm{mmHg}$, is modelled as a normal distribution with mean 127 and standard deviation 16.

A medical researcher wants to study adults with blood pressures higher than the $95^{\text {th }}$ percentile. Find the minimum blood pressure needed for an adult to be included in her survey

3E Finding the Mean or Standard Deviation

1. The random variable $X \sim N\left(\mu, 3^{2}\right)$. Given that $P(X>20)=0.2$, find the value of μ.
2. A machine makes metal sheets with width $X \mathrm{~cm}$, modelled as a normal distribution such that $X \sim N\left(50, \sigma^{2}\right)$.
a) Given that $P(X<46)=0.2119$, find the value of σ.
b) Find the $90^{\text {th }}$ percentile of the widths
3. The random variable $X \sim N\left(\mu, \sigma^{2}\right)$. Given that $P(X>35)=0.025$ and $P(X<15)=$ 0.1469 , find the values of μ and σ.

3F Approximating from the Binomial Distribution

1. A biased coin has $P($ Head $)=0.53$. The coin is tossed 100 times and the number of heads, X, is recorded.
a) Write down a binomial model for X
b) Explain why X can be approximated using a normal distribution
c) Find the values of μ and σ in this approximation
2. The binomial random variable $X \sim B(150,0.48)$ is approximated by the normal random variable $Y \sim N\left(72,6.12^{2}\right)$.
a) Use this approximation to find $P(X \leq 70)$
b) Also use the approximation to find $P(80 \leq X<90)$
3. For a particular type of flower bulb, 55% will produce yellow flowers. A random sample of 80 bulbs is planted.

Calculate the percentage error incurred when using a normal approximation to estimate the probability that there are exactly 50 yellow flowers.

3G Hypothesis Testing

1. A company sells fruit juice in cartons. The amount of juice in a carton has a normal distribution with a standard deviation of 3 ml .

The company claims that the mean amount of juice per carton, μ, is 60 ml . A trading inspector has received complaints that the company is overstating the amount of juice per carton and wishes to investigate this complaint.

The inspector takes a random sample of 16 cartons and finds that the mean amount of juice per carton is 59.1 ml .

Using a 5\% significance level, and stating your hypotheses clearly, test whether or not there is sufficient evidence to uphold the complaints.
2. A machine produces bolts of diameter D where D has a normal distribution with mean 0.580 cm and standard deviation 0.015 cm .

This machine is serviced and after the service a random sample of 50 bolts from the next production is taken to see if the mean diameter of the bolts has changed from 0.580 cm . The distribution of the bolts after the service is still normal with a standard deviation of 0.015 cm .
a) Find, at the 1% level, the critical region for this test, stating your hypotheses clearly
b) The mean diameter of a sample of 50 bolts is found to be 0.587 mm . Comment on this in light of the critical region

