14H Exponentials in Data

 $y = ax^n$

 $y = ab^x$

1. The data shows the rank (by size) and population of some UK cities.

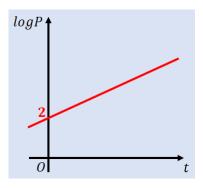
The relationship between P and R can be modelled by the formula:

 $P = aR^n$

Where a and n are constants.

a) Draw a table giving values of *logR* and *logP* to 2 decimal places

City	Birmingham	Leeds	Glasgow	Sheffield	Bradford
Rank, R	2	3	4	5	6
Population , P	1,000,000	730,000	620,000	530,000	480,000
City	Birmingham	Leeds	Glasgow	Sheffield	Bradford


b) Plot a graph of *logR* against *logP* using the values from your table, and draw a line of best fit

c) Use your graph to estimate the values of *a* and *n* to two significant figures

2. The graph shown represents the growth of a population of bacteria, P over a period of t hours. The graph has a gradient of 0.6 and meets the vertical axis at (0,2) as shown.

A scientist suggests that this growth can be modelled by the equation $P = ab^t$, where a and b are constants to be found.

a) Write down an equation for the line

b) Using your answer to part a or otherwise, find the values of *a* and *b*, giving them to 3sf where necessary

c) Interpret the meaning of the constant *a* in this model