Graphs for Exponential Data

Turning non-linear graphs into linear ones

Case 1: Polynomial \rightarrow Linear
Suppose our original model was a
polynomial one*:

$$
y=a x^{n}
$$

Then taking logs of both sides:

$$
\begin{aligned}
& \log y=\log a x^{n} \\
& \log y=\log a+n \log x
\end{aligned}
$$

We can compare this against a straight line:

$$
Y=m X+c
$$

[^0]Case 2: Exponential \rightarrow Linear
Suppose our original model was an exponential one:

$$
y=a b^{x}
$$

Then taking logs of both sides:

$$
\begin{aligned}
& \log y=\log a b^{x} \\
& \log y=\log a+x \log b
\end{aligned}
$$

Again we can compare this against a straight line:

$$
Y=m X+c
$$

The key difference compared to Case 1 is that we're only logging the y values (e.g. number of transistors), not the x values (e.g. years elapsed). Note that you do not need to memorise the contents of these boxes and we will work out from scratch each time...

In summary, logging the y-axis turns an exponential graph into a linear one.
Logging both the x and y-axis turns a polynomial graph into a linear one.
[Textbook] The graph represents the growth of a population of bacteria, P, over t hours. The graph has a gradient of 0.6 and meets the vertical axis at $(0,2)$ as shown.
A scientist suggests that this growth can be modelled by the equation $P=a b^{t}$, where a and b are constants to be found.
a. Write down an equation for the line.
b. Using your answer to part (a) or otherwise, find the values of a and b, giving them to 3 sf where necessary.
Interpret the meaning of the constant a in this model.

[Textbook] The table below gives the rank (by size) and population of the UK's largest cities and districts (London is number 1 but has been excluded as an outlier).

City	B'ham	Leeds	Glasgow	Sheffield	Bradford
Rank, \boldsymbol{R}	2	3	4	5	6
Population, \boldsymbol{P}	1000000	730000	620000	530000	480000

The relationship between the rank and population can be modelled by the formula: $P=a R^{n}$ where a and n are constants.
a) Draw a table giving values of $\log R$ and $\log P$ to 2 dp .
$R=a P^{n}$ but then plot
$\log P$ against $\log R$.
b) Plot a graph of $\log R$ against $\log P$ using the values from your table and draw the line of best fit.
c) Use your graph to estimate the values of a and n to two significant figures.

Dr Frost's wants to predict his number of Twitter followers P (@DrFrostMaths) t years from the start 2015. He predicts that his followers will increase exponentially according to the model $P=a b^{t}$, where a, b are constants that he wishes to find.
He records his followers at certain times. Here is the data:
Years \boldsymbol{t} after 2015: $0.7 \quad 1.3 \quad 2.2$
Followers P: 235336737162
a) Draw a table giving values of t and $\log P$ (to 3 dp).
b) A line of best fit is drawn for the data in your new table, and it happens to go through the first data point above (where $t=0.7$) and last (where $t=2.2$).
Determine the equation of this line of best fit. (The y-intercept is 3.147)
c) Hence, determine the values of a and b in the model.
d) Estimate how many followers Dr Frost will have at the start of 2020 (when $t=5$).

[^0]: * We could also allow non-integer n; the term would then not strictly be polynomial, but we'd still say the function had "polynomial growth".

