Solving equations with exponential terms

Solve $3^{x}=20$

Solve $5^{4 x-1}=61$

Solve $3^{x}=2^{x+1}$

Solve the equation $5^{2 x}-12\left(5^{x}\right)+20=0$, giving your answer to 3sf.

Solve $3^{2 x-1}=5$, giving your answer to 3 dp .

Solve $2^{x} 3^{x+1}=5$, giving your answer in exact form.

Solve $3^{x+1}=4^{x-1}$, giving your answer to 3 dp .

Extension

1 [MAT 2011 1H] How many positive values x which satisfy the equation:
$x=8^{\log _{2} x}-9^{\log _{3} x}-4^{\log _{2} x}+\log _{0.5} 0.25$

2 [MAT 2013 1J] For a real number x we denote by $[x]$ the largest integer less than or equal to x. Let n be a natural number. The integral

$$
\int_{0}^{n}\left[2^{x}\right] d x
$$

equals:
(A) $\log _{2}\left(\left(2^{n}-1\right)!\right)$
(B) $n 2^{n}-\log _{2}\left(\left(2^{n}\right)!\right)$
(C) $n 2^{n}$
(D) $\log _{2}\left(\left(2^{n}\right)!\right)$

