Logarithms

$\log _{a} n$ ("said log base a of n ") is equivalent to $a^{x}=n$. The log function outputs the missing power.

Examples

$$
\begin{array}{lc}
\log _{5} 25= & \log _{3}\left(\frac{1}{27}\right)= \\
\log _{3} 81= & \log _{2}\left(\frac{1}{16}\right)= \\
\log _{2} 32= & \log _{a}\left(a^{3}\right)= \\
\log _{10} 1000= & \log _{4}(-1)= \\
\log _{4} 1= & \\
\log _{4} 4= & \\
\log _{2}\left(\frac{1}{2}\right)= &
\end{array}
$$

With your calculator...

$\log _{3} 7=$
$\log _{5} 0.3=$
ln
$\ln 10=$
$\ln e=$
$\log 100=$

Extension

1
[MAT 2015 1J] Which is the largest of the following numbers?
A) $\frac{\sqrt{7}}{2}$
B) $\frac{5}{4}$
C) $\frac{\sqrt{10!}}{3(6!)}$
D) $\frac{\log _{2} 30}{\log _{3} 85}$
E) $\frac{1+\sqrt{6}}{3}$
[MAT 2013 1F] Three positive numbers a, b, c satisfy

$$
\log _{b} a=2
$$

$$
\log _{b}(c-3)=3
$$

$$
\log _{a}(c+5)=2
$$

This information:
A) specifies a uniquely;
B) is satisfied by two values of a;
C) is satisfied by infinitely many values of a;
D) is contradictory

