Lower 6 Chapter 14

Exponentials and logarithms

Chapter Overview

1. Sketch exponential graphs.
2. Use and interpret models that use exponential functions.
3. Be able to differentiate $e^{k x}$.
4. Understand the log function and use laws of logs.
5. Use logarithms to estimate values of constants in nonlinear models.

6 Exponentials and logarithms	6.1	Know and use the function a^{x} and its graph, where a is positive. Know and use the function e^{x} and its graph	Understand the difference in shape between $a<1$ and $a>1$
	6.2	Know that the gradient of $\mathrm{e}^{k x}$ is equal to $k \mathrm{e}^{k x}$ and hence understand why the exponential model is suitable in many applications.	Realise that when the rate of change is proportional to the y value, an exponential model should be used.
6 Exponentials and logarithms continued	6.3	Know and use the definition of $\log _{a} x$ as the inverse of a^{x}, where a is positive and $x \geqslant 0$ Know and use the function $\ln x$ and its graph Know and use $\ln x$ as the inverse function of e^{x}	$a \neq 1$ Solution of equations of the form $\mathrm{e}^{a x+b}=p$ and $\ln (a x+b)=q$ is expected.
	6.4	Understand and use the laws of logarithms: $\begin{aligned} \log _{a} x+\log _{a} y & =\log _{a}(x y) \\ \log _{a} x-\log _{a} y & =\log _{a}\left(\frac{x}{y}\right) \end{aligned}$ $k \log _{a} x=\log _{a} x^{k}$ (including, for example, $\left.k=-1 \text { and } k=-\frac{1}{2}\right)$	Includes $\log _{a} a=1$
	6.5	Solve equations of the form $a^{x}=b$	Students may use the change of base formula. Questions may be of the form, for example, $2^{3 x-1}=3$
	6.6	Use logarithmic graphs to estimate parameters in relationships of the form $y=a x^{n}$ and $y=k b^{x}$, given data for x and y	Plot $\log y$ against $\log x$ and obtain a straight line where the intercept is $\log a$ and the gradient is n Plot $\log y$ against x and obtain a straight line where the intercept is $\log k$ and the gradient is $\log b$
	6.7	Understand and use exponential growth and decay; use in modelling (examples may include the use of e in continuous compound interest, radioactive decay, drug concentration decay, exponential growth as a model for population growth); consideration of limitations and refinements of exponential models.	Students may be asked to find the constants used in a model. They need to be familiar with terms such as initial, meaning when $t=0$. They may need to explore the behaviour for large values of t or to consider whether the range of values predicted is appropriate. Consideration of a second improved model may be required.

Contrasting exponential graphs

On the same axes sketch $y=3^{x}, y=2^{x}, y=1.5^{x}$

On the same axes sketch $y=2^{x}$ and $y=\left(\frac{1}{2}\right)^{x}$

Graph Transformations
Sketch $y=2^{x+3}$

