Using Integration

If we know the acceleration, we can integrate to find expressions for velocity and displacement. Recall that the area under a velocity-time graph gives the displacement. Be careful if the velocity (and hence the area) falls under the t-axis as this will give negative displacement.

Example

A particle P, moves in a straight line. At t seconds its acceleration is $(6t + 12)ms^{-1}$. When t = 0, P is at the point A and its velocity is $3ms^{-1}$.

a) Find an expression for the velocity of P in terms of t

b) Find the distance travelled between times t = 3 and t = 5

Example (Textbook Page 189 Example 7)

A particle travels in a straight line. After t seconds its velocity, $v \text{ ms}^{-1}$, is given by $v = 5 - 3t^2$, $t \ge 0$. Find the distance travelled by the particle in the third second of its motion.

Test Your Understanding (EdExcel M2 June 2015 Q6)

A particle P moves on the positive x-axis. The velocity of P at time t seconds is $(2t^2 - 9t + 4) \text{ m s}^{-1}$. When t = 0, P is 15 m from the origin O.

Find

(a)	the values of t when P is instantaneously at rest,
(b)	the acceleration of <i>P</i> when $t = 5$

- (3)
- (c) the total distance travelled by P in the interval $0 \le t \le 5$ (5)

2

(3)

Exercise 11D Page 189