Using Integration

If we know the acceleration, we can integrate to find expressions for velocity and displacement. Recall that the area under a velocity-time graph gives the displacement. Be careful if the velocity (and hence the area) falls under the t-axis as this will give negative displacement.

Example

A particle P, moves in a straight line. At t seconds its acceleration is $(6 t+12) \mathrm{ms}^{-1}$. When $t=0, P$ is at the point A and its velocity is $3 \mathrm{~ms}^{-1}$.
a) Find an expression for the velocity of P in terms of t
b) Find the distance travelled between times $t=3$ and $t=5$

Example (Textbook Page 189 Example 7)

A particle travels in a straight line. After t seconds its velocity, $v \mathrm{~ms}^{-1}$, is given by $v=5-3 t^{2}, t \geq 0$. Find the distance travelled by the particle in the third second of its motion.

Test Your Understanding (EdExcel M2 June 2015 Q6)

A particle P moves on the positive x-axis. The velocity of P at time t seconds is $\left(2 t^{2}-9 t+4\right) \mathrm{m} \mathrm{s}^{-1}$. When $t=0, P$ is 15 m from the origin O.

Find
(a) the values of t when P is instantaneously at rest,
(b) the acceleration of P when $t=5$
(c) the total distance travelled by P in the interval $0 \leqslant t \leqslant 5$

