11A Functions of Time

1. A body moves in a straight line, such that its displacement, s metres, from a point O at time t seconds is given by $s=2 t^{3}-3 t$ for $t>0$
a) Find the value of s when $t=2$
b) Find the time taken for the body to return to 0 .
2. A toy train travels along a straight track, leaving the start of the track at time $t=0$. It then returns to the start of the track. The distance, s metres, from the start of the track at time t seconds is modelled by:
$s=4 t^{2}-t^{3}$ where $0 \leq t \leq 4$
Explain why there is a time restriction on this model
3. A body moves in a straight line such that its velocity, $v \mathrm{~ms}^{-1}$, at time t seconds is given by: $v=2 t^{2}-16 t+24$ for $t \geq 0$

Find:
a) The initial velocity
b) The values of t when the body is instantaneously at rest
c) The value of t when the velocity is $64 \mathrm{~ms}^{-1}$
d) The greatest speed of the body in the interval $0 \leq t \leq 5$

11B Differentiating between x, v, a

1. A particle P is moving along the x-axis. At time t seconds, the displacement x metres from O is given by:

$$
x=t^{4}-32 t+12
$$

Find:
a) The speed of P when $\mathrm{t}=3$
b) The value of t for which P is instantaneously at rest
c) The magnitude of acceleration when $t=1.5$

11C Maxima \& Minima

1. A child is playing with a yo-yo. The yo-yo leaves the child's hand at time $t=0$ and travels vertically in a straight line before returning to the child's hand. The distance in metres, s of the yo-yo from the child's hand after time t seconds is given by:

$$
s=0.6 t+0.4 t^{2}-0.2 t^{3}, \quad 0 \leq t \leq 3
$$

d) Justify the restriction $0 \leq t \leq 3$
e) Find the maximum distance of the yo-yo from the child's hand, to 3sf

11D Integrating between x, v, a

1. A particle is moving on the x-axis. At time $t=0$, the particle is at the point where $x=5$. The velocity of the particle at time t seconds $(t \geq 0)$ is $\left(6 t-t^{2}\right) m s^{-1}$. Find:
a) An expression for the displacement of the particle from O at time t seconds
b) The distance of the particle from its starting point when $t=6$
2. A particle travels in a straight line. After t seconds its velocity, $v m s^{-1}$, is given by $v=5-$ $3 t^{2}, \quad t \geq 0$. Find the distance travelled by the particle in the third second of its motion.

11E Deriving SUVAT

1. A particle moves in a straight line with constant acceleration, $a \mathrm{~ms}^{-2}$. Given that its initial velocity is $u \mathrm{~ms}^{-1}$ and its initial displacement is 0 m , prove that:
a) The particle's velocity at time t seconds is given by $v=u+a t$
b) The particle's displacement, s, at time t is given by $s=u t+\frac{1}{2} a t^{2}$
