Pulleys

A pulley is a wheel on which a rope/string/cable passes.
What modelling assumptions are made?

Example

Particles of mass 4 kg and 2 kg are connected by a light string passing over a smooth, fixed pulley. The particles hang freely and are released from rest.
i) Find the acceleration of the two particles and the tension in the string. Let the acceleration be a and the tension in the string be T
ii) Find the force exerted on the pulley by the string

Example - Horizontal and Vertical String

(Take $g=10 \mathrm{~ms}^{-2}$ in this question)
The diagram shows a particle, P , of mass 0.5 kg on a smooth horizontal table. P is connected to another particle, Q , of mass 1.5 kg , by a taut, light, inextensible string which passes over a small, fixed, smooth pulley at the edge of the table, Q hanging vertically below the pulley.
A horizontal force of magnitude $X N$ acts on P as shown.
a) Given the system is in equilibrium, find X
b) Given that $X=12$, find the distance travelled by Q in the first two seconds of its motion, following the release of the system from rest. You may assume that P does not reach the pulley in this time.

Test Your Understanding (Edexeel MI Jan 2010 a6)

Figure 4
Two particles A and B have masses $5 m$ and $k m$ respectively, where $k<5$. The particles are connected by a light inextensible string which passes over a smooth light fixed pulley. The system is held at rest with the string taut, the hanging parts of the string vertical and with A and B at the same height above a horizontal plane, as shown in Figure 4. The system is released from rest. After release, A descends with acceleration $\frac{1}{4} g$.
(a) Show that the tension in the string as A descends is $\frac{15}{4} m g$.
(b) Find the value of k.
(c) State how you have used the information that the pulley is smooth.

After descending for 1.2 s , the particle A reaches the plane. It is immediately brought to rest by the impact with the plane. The initial distance between B and the pulley is such that, in the subsequent motion, B does not reach the pulley.
(d) Find the greatest height reached by B above the plane.

