Motion in Two Dimensions

Force and Acceleration can be represented as both scalars and vectors. Therefore Newton's 2nd law can be used in vector form too.

This naturally means that F = ma works with vectors too.

Example

Forces F_1 (4i - 7j), and F_2 (-6i + 2j) and F_3 (4j) act on a particle of mass 2kg. Find the acceleration of the particle. Find also the magnitude and the bearing of the acceleration.

A constant force F N acts on a particle of mass 5kg for 8 seconds. The particle is initially at rest and 8 seconds later it has velocity (12i - 5j) ms⁻¹. Find F.

Test Your Understanding (Textbook)

A boat is modelled as a particle of mass 60 kg being acted on by three forces.

$$F_1 = {80 \choose 50} N$$
, $F_2 = {10p \choose 20q} N$, $F_3 = {-75 \choose 100} N$

Given that the boat is accelerating at a rate of $\binom{0.8}{-1.5}$ ms⁻², find the values of p and q.