Motion in Two Dimensions

Force and Acceleration can be represented as both scalars and vectors. Therefore Newton's 2nd law can be used in vector form too.

This naturally means that $\boldsymbol{F}=m \boldsymbol{a}$ works with vectors too.

Example

Forces $\boldsymbol{F}_{1}(4 \boldsymbol{i}-7 \boldsymbol{j})$, and $\boldsymbol{F}_{2}(-6 \boldsymbol{i}+2 \boldsymbol{j})$ and $\boldsymbol{F}_{3}(4 \boldsymbol{j})$ act on a particle of mass 2 kg . Find the acceleration of the particle. Find also the magnitude and the bearing of the acceleration.

Example - Using SUVAT Equations

A constant force \boldsymbol{F} N acts on a particle of mass 5 kg for 8 seconds. The particle is initially at rest and 8 seconds later it has velocity $(12 \boldsymbol{i}-5 \boldsymbol{j}) \mathrm{ms}^{-1}$. Find \boldsymbol{F}.

Test Your Understanding (Textbook)

A boat is modelled as a particle of mass 60 kg being acted on by three forces.

$$
\boldsymbol{F}_{1}=\binom{80}{50} N, \quad \boldsymbol{F}_{2}=\binom{10 p}{20 q} N, \quad \boldsymbol{F}_{3}=\binom{-75}{100} N
$$

Given that the boat is accelerating at a rate of $\binom{0.8}{-1.5} \mathrm{~ms}^{-2}$, find the values of p and q.

