Forces and Acceleration

> Newton's $2^{\text {nd }}$ Law of Motion: $F=m a$
> (where the force F and acceleration a are in the same direction)

- Force is measured in Newtons (N)
- Mass is measured in kg
- Acceleration is measured in ms^{-2}

$$
\begin{aligned}
\text { If } \mathrm{F} & =\mathrm{ma} \\
\mathrm{~N} & =\mathrm{kgms}^{-2}
\end{aligned}
$$

Examples

1. A car of 2000 kg has a driving force of 800 N and forces of 200 N resisting its motion. Determine its acceleration.
2. A child has a mass of 50 kg . What is the gravitational force acting on the child? (i.e. its weight)

Combining $F=$ ma with SUVAT equations

We can use SUVAT equations and Newton 1 and 2 to solve problems. We resolve forces which are parallel in one or more directions to do this.
Forces acting in a perpendicular direction do not affect the motion of a body.
NB: Remember SUVAT is for constant acceleration only.

Example

The forces acting on a body cause it to accelerate as indicated.
a) Find the values of X and Y
b) Find the distance travelled in the first 4 seconds if the object starts at rest.

(Indicate which direction is positive vertically and horizontally)

Forces Acting Under Gravity

$$
\text { Acceleration due to gravity is } g=9.8 \mathrm{~ms}^{-2}
$$

Example

A lift of mass 600 kg is raised or lowered by means of a cable attached to its top. When carrying passengers whose total mass is 400 kg , the lift accelerates uniformly from rest to $2 \mathrm{~ms}^{-1}$ over a distance of 5 m . Find:
a) The magnitude of the acceleration
b) The tension in the cable if the motion takes place vertically upwards
c) The tension in the cable if the motion takes place vertically downwards

Test Your Understanding (Edefeel M1 May 20120.5 abridged)

A particle P is projected vertically upwards from a point A with speed $u \mathrm{~m} \mathrm{~s}^{-1}$. The point A is 17.5 m above horizontal ground. The particle P moves freely under gravity until it reaches the ground with speed $28 \mathrm{~m} \mathrm{~s}^{-1}$.

The ground is soft and, after P reaches the ground, P sinks vertically downwards into the ground before coming to rest. The mass of P is 4 kg and the ground is assumed to exert a constant resistive force of magnitude 5000 N on P.
(c) Find the vertical distance that P sinks into the ground before coming to rest.

