Forces as Vectors

Forces have direction, and therefore we can naturally write them as vectors, either in $\boldsymbol{i}-\boldsymbol{j}$ notation or as column vectors.

Add the vectors of two or more forces to find the resultant force.

Example

The forces $(3 \boldsymbol{i}-4 j),(2 \boldsymbol{i}+5 \boldsymbol{j})$ and $(a \boldsymbol{i}+b \boldsymbol{j})$ act on a particle in equilibrium. Find the values of a and b .
If the particle is in equilibrium, what is the value of the resultant force?

We can use Pythagoras and trignometry to find the magnitude and bearing of a force when it is in vector form.

Example

The vector i is due east and j due north. A particle begins at rest at the origin. It is acted on by three forces $(2 \boldsymbol{i}+\boldsymbol{j}) \mathrm{N},(3 \boldsymbol{i}-2 \boldsymbol{j}) \mathrm{N}$ and $(-\boldsymbol{i}+4 \boldsymbol{j}) \mathrm{N}$.
(a) Find the resultant force in the form $p \boldsymbol{i}+q \boldsymbol{j}$.
(b) Work out the magnitude and bearing of the resultant force.

Test Your Understanding (EdExcel M1 Jan 2012 Q3)

Three forces $\mathbf{F}_{1}, \mathbf{F}_{2}$ and \mathbf{F}_{3} acting on a particle P are given by

$$
\begin{aligned}
& \mathbf{F}_{1}=(7 \mathbf{i}-9 \mathbf{j}) \mathrm{N} \\
& \mathbf{F}_{2}=(5 \mathbf{i}+6 \mathbf{j}) \mathrm{N} \\
& \mathbf{F}_{3}=(p \mathbf{i}+q \mathbf{j}) \mathrm{N}
\end{aligned}
$$

where p and q are constants.
Given that P is in equilibrium,
(a) find the value of p and the value of q.
(3)

The force \mathbf{F}_{3} is now removed. The resultant of \mathbf{F}_{1} and \mathbf{F}_{2} is \mathbf{R}.
Find
(b) the magnitude of \mathbf{R},
(2)
(c) the angle, to the nearest degree, that the direction of \mathbf{R} makes with \mathbf{j}.

Test Your Understanding (EdExcel M1 May 2009 Q2)

A particle is acted upon by two forces \mathbf{F}_{1} and \mathbf{F}_{2}, given by $F_{1}=(\mathbf{i}-3 \mathbf{j}) N$,
$\mathbf{F}_{2}=(p \mathbf{i}+2 p \mathbf{j}) \mathrm{N}$, where p is a positive constant.
(a) Find the angle between \mathbf{F}_{2} and \mathbf{j}.

The resultant of \mathbf{F}_{1} and $\mathbf{F}_{\mathbf{2}}$ is \mathbf{R}. Given that \mathbf{R} is parallel to \mathbf{i},
(b) find the value of p.

