Forces as Vectors

Forces have direction, and therefore we can naturally write them as vectors, either in *i-j* notation or as column vectors.

Add the vectors of two or more forces to find the resultant force.

Example

The forces (3i - 4j), (2i + 5j) and (ai + bj) act on a particle in equilibrium. Find the values of a and b.

If the particle is in equilibrium, what is the value of the resultant force?

We can use Pythagoras and trignometry to find the magnitude and bearing of a force when it is in vector form.

Example

The vector i is due east and j due north. A particle begins at rest at the origin. It is acted on by three forces (2i + j) N, (3i - 2j) N and (-i + 4j) N.

(a) Find the resultant force in the form $p\mathbf{i} + q\mathbf{j}$.

(b) Work out the magnitude and bearing of the resultant force.

Test Your Understanding (EdExcel M1 Jan 2012 Q3)

Three forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 acting on a particle P are given by

$$\mathbf{F}_1 = (7\mathbf{i} - 9\mathbf{j}) \text{ N}$$
$$\mathbf{F}_2 = (5\mathbf{i} + 6\mathbf{j}) \text{ N}$$
$$\mathbf{F}_3 = (p\mathbf{i} + q\mathbf{j}) \text{ N}$$

where p and q are constants.

Given that P is in equilibrium,

(a) find the value of p and the value of q.

(3)

The force \mathbf{F}_3 is now removed. The resultant of \mathbf{F}_1 and \mathbf{F}_2 is **R**. Find

(b) the magnitude of **R**,

(2)

(c) the angle, to the nearest degree, that the direction of **R** makes with **j**.

(3)

Test Your Understanding (EdExcel M1 May 2009 Q2)

A particle is acted upon by two forces \mathbf{F}_1 and \mathbf{F}_2 , given by

F₁ = (i - 3j) N,
F₂ = (pi + 2pj) N, where p is a positive constant.
(a) Find the angle between F₂ and j.

The resultant of $\mathbf{F_1}$ and $\mathbf{F_2}$ is **R**. Given that **R** is parallel to **i**,

(b) find the value of p.

(4)