Paper 2: Pure Mathematics 2 Mark Scheme

Question	Scheme	Marks	AOs
1	Sets $\mathrm{f}(-2)=0 \Rightarrow 2 \times(-2)^{3}-5 \times(-2)^{2}+a \times-2+a=0$	M1	3.1a
	Solves linear equation $2 a-a=-36 \Rightarrow a=$	dM1	1.1b
	$\Rightarrow a=-36$	A1	1.1b
(3 marks)			
Notes:			
M1: Selects a suitable method given that $(x+2)$ is a factor of $\mathrm{f}(x)$ Accept either setting $\mathrm{f}(-2)=0$ or attempted division of $\mathrm{f}(x)$ by $(x+2)$ dM1: Solves linear equation in a. Minimum requirement is that there are two terms in ' a ' which must be collected to get .. $a=. . \Rightarrow a=$ A1: $\quad a=-36$			

| Question | Scheme | Marks | AOs |
| :--- | :--- | :---: | :---: | :---: |
| 2(a) | Identifies an error for student A: They use $\frac{\cos \theta}{\sin \theta}=\tan \theta$ | 2.3 | |

Question	Scheme	Marks	AOs
3	Attempts the product and chain rule on $y=x(2 x+1)^{4}$	M1	2.1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x+1)^{4}+8 x(2 x+1)^{3}$	A1	1.1b
	Takes out a common factor $\frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x+1)^{3}\{(2 x+1)+8 x\}$	M1	1.1b
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x+1)^{3}(10 x+1) \Rightarrow n=3, A=10, B=1$	A1	1.1b
(4 marks)			
Notes:			
M1: Applies the product rule to reach $\frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x+1)^{4}+B x(2 x+1)^{3}$ A1: $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x+1)^{4}+8 x(2 x+1)^{3}$ M1: Takes out a common factor of $(2 x+1)^{3}$ A1: The form of this answer is given. Look for $\frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x+1)^{3}(10 x+1) \Rightarrow n=3, A=10, B=1$			

Question	Scheme	Marks	AOs
4 (a)	$\operatorname{gf}(x)=3 \ln \mathrm{e}^{x}$	M1	1.1b
	$=3 x,(x \in \mathbb{R})$	A1	1.1b
		(2)	
(b)	$\mathrm{gf}(x)=\mathrm{fg}(x) \Rightarrow 3 x=x^{3}$	M1	1.1b
	$\Rightarrow x^{3}-3 x=0 \Rightarrow x=$	M1	1.1b
	$\Rightarrow x=(+) \sqrt{3}$ only as $\ln x$ is not defined at $x=0$ and $-\sqrt{3}$	M1	2.2a
		(3)	
(5 marks)			
Notes:			
(a) M1: For applying the functions in the correct order A1: The simplest form is required so it must be $3 x$ and not left in the form $3 \ln \mathrm{e}^{x}$ An answer of $3 x$ with no working would score both marks			
(b) M1: Allow the candidates to score this mark if they have $\mathrm{e}^{3 \ln x}=$ their $3 x$ M1: For solving their cubic in x and obtaining at least one solution. A1: For either stating that $x=\sqrt{3}$ only as $\ln x(\operatorname{or} 3 \ln x)$ is not defined at $x=0$ and $-\sqrt{3}$ or stating that $3 x=x^{3}$ would have three answers, one positive one negative and one zero but $\ln x(\operatorname{or} 3 \ln x)$ is not defined for $x \leqslant 0$ so therefore there is only one (real) answer. Note: Student who mix up fg and gf can score full marks in part (b) as they have already been penalised in part (a)			

Question	Scheme	Marks	AOs
5(a)	Substitutes $t=0.5$ into $m=25 \mathrm{e}^{-0.05 t} \Rightarrow m=25 \mathrm{e}^{-0.05 \times 0.5}$	M1	3.4
	$\Rightarrow m=24.4 \mathrm{~g}$	A1	1.1b
		(2)	
(b)	States or uses $\frac{\mathrm{d}}{\mathrm{d} t}\left(\mathrm{e}^{-0.05 t}\right)= \pm C \mathrm{e}^{-0.05 t}$	M1	2.1
	$\frac{\mathrm{d} m}{\mathrm{~d} t}=-0.05 \times 25 \mathrm{e}^{-0.05 t}=-0.05 \mathrm{~m} \Rightarrow k=-0.05$	A1	1.1b
		(2)	
(4 marks)			
Notes:			
(a) M1: Substitutes $t=0.5$ into $m=25 \mathrm{e}^{-0.05 t} \Rightarrow m=25 \mathrm{e}^{-0.05 \times 0.5}$ A1: $\quad m=24.4 \mathrm{~g}$ An answer of $m=24.4 \mathrm{~g}$ with no working would score both marks			
(b) M1: Applies the rule $\frac{\mathrm{d}}{\mathrm{d} t}\left(\mathrm{e}^{k x}\right)=k \mathrm{e}^{k x}$ in this context by stating or using $\frac{\mathrm{d}}{\mathrm{d} t}\left(\mathrm{e}^{-0.05 t}\right)= \pm C \mathrm{e}^{-0.05 t}$ A1: $\quad \frac{\mathrm{d} m}{\mathrm{~d} t}=-0.05 \times 25 \mathrm{e}^{-0.05 t}=-0.05 m \Rightarrow k=-0.05$			

Questio	Scheme	Marks	AOs
6(i)	$x^{2}-6 x+10=(x-3)^{2}+1$	M1	2.1
	Deduces "always true" as $(x-3)^{2} \geqslant 0 \Rightarrow(x-3)^{2}+1 \geqslant 1$ and so is always positive	A1	2.2a
		(2)	
(ii)	For an explanation that it need not (always) be true This could be if $a<0$ then $a x>b \Rightarrow x<\frac{b}{a}$	M1	2.3
	States 'sometimes' and explains if $a>0$ then $a x>b \Rightarrow x>\frac{b}{a}$ if $a<0$ then $a x>b \Rightarrow x<\frac{b}{a}$	A1	2.4
		(2)	
(iii)	Difference $=(n+1)^{2}-n^{2}=2 n+1$	M1	3.1a
	Deduces "Always true" as $2 n+1=($ even +1$)=$ odd	A1	2.2a
		(2)	
(6 marks)			
Notes:			
(i) M1: Attempts to complete the square or any other valid reason. Allow for a graph of $y=x^{2}-6 x+10$ or an attempt to find the minimum by differentiation A1: States always true with a valid reason for their method (ii) M1: For an explanation that it need not be true (sometimes). This could be if $a<0$ then $a x>b \Rightarrow x<\frac{b}{a}$ or simply $-3 x>6 \Rightarrow x<-2$ A1: Correct statement (sometimes true) and explanation (iii) M1: Sets up the proof algebraically. For example by attempting $(n+1)^{2}-n^{2}=2 n+1$ or $m^{2}-n^{2}=(m-n)(m+n)$ with $m=n+1$ A1: States always true with reason and proof Accept a proof written in words. For example If integers are consecutive, one is odd and one is even When squared odd \times odd $=$ odd and even \times even $=$ even The difference between odd and even is always odd, hence always true Score M1 for two of these lines and A1 for a good proof with all three lines or equivalent.			

$\left.\begin{array}{|l|c|c|c|}\hline \text { Question } & \text { Scheme } & \text { Marks } & \text { AOs } \\ \hline \text { 7(a) } & \sqrt{(4-x)}=2\left(1-\frac{1}{4} x\right)^{\frac{1}{2}} & \text { M1 } & 2.1 \\ \hline & \left(1-\frac{1}{4} x\right)^{\frac{1}{2}}=1+\frac{1}{2}\left(-\frac{1}{4} x\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{1}{4} x\right)^{2}+\ldots & \text { M1 } & 1.1 \mathrm{l} \\ \hline & \sqrt{(4-x)}=2\left(1-\frac{1}{8} x-\frac{1}{128} x^{2}+. .\right.\end{array}\right)$

Question		cheme	Marks	AOs
9	$\int\left(3 x^{0.5}+A\right) \mathrm{d} x=2 x^{1.5}+A x(+c)$		$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Uses limits and sets $=2 A^{2} \Rightarrow(2 \times 8+4 A)-(2 \times 1+A)=2 A^{2}$		M1	1.1b
	Sets up quadratic and attempts to solve	Sets up quadratic and attempts $b^{2}-4 a c$	M1	1.1b
	$\Rightarrow A=-2, \frac{7}{2}$ and states that there are two roots	States $b^{2}-4 a c=121>0$ and hence there are two roots	A1	2.4
(5 marks)				
Notes:				
M1: Integrates the given function and achieves an answer of the form $k x^{1.5}+A x(+c)$ where k is a non- zero constant				
M1: Substitutes in limits and subtracts. This can only be scored if $\int \mathrm{d} x=A x$ and not $\frac{A^{2}}{2}$				
M1: Sets up quadratic equation in A and either attempts to solve or attempts $b^{2}-4 a c$ A1: Either $A=-2, \frac{7}{2}$ and states that there are two roots Or states $b^{2}-4 a c=121>0$ and hence there are two roots				

Question	Scheme	Marks	AOs
10	Attempts $S_{\infty}=\frac{8}{7} \times S_{6} \Rightarrow \frac{a}{1-r}=\frac{8}{7} \times \frac{a\left(1-r^{6}\right)}{1-r}$	M1	2.1
	$\Rightarrow 1=\frac{8}{7} \times\left(1-r^{6}\right)$	M1	2.1
	$\Rightarrow r^{6}=\frac{1}{8} \Rightarrow r=.$.	M1	1.1b
	$\Rightarrow r= \pm \frac{1}{\sqrt{2}} \quad($ so $k=2)$	A1	1.1b
(4 marks)			
Notes:			
M1: Substitutes the correct formulae for S_{∞} and S_{6} into the given equation $S_{\infty}=\frac{8}{7} \times S_{6}$			
M1: Proceeds to an equation just in r			
M1: Solves using a correct method			
A1: Proceeds to $r= \pm \frac{1}{\sqrt{2}}$ giving $k=2$			

Question	Scheme	Marks	AOs
11 (a)	$\mathrm{f}(x) \geqslant 5$	B1	1.1b
		(1)	
(b)	Uses $-2(3-x)+5=\frac{1}{2} x+30$	M1	3.1a
	Attempts to solve by multiplying out bracket, collect terms etc $\frac{3}{2} x=31$	M1	1.1b
	$x=\frac{62}{3}$ only	A1	1.1b
		(3)	
(c)	Makes the connection that there must be two intersections. Implied by either end point $k>5$ or $k \leqslant 11$	M1	2.2a
	$\{k: k \in \mathbb{R}, 5<k \leqslant 11\}$	A1	2.5
		(2)	
(6 marks)			
Notes:			
(a) B1: $\quad \mathrm{f}(x) \geqslant 5$ Also allow $\mathrm{f}(x) \in[5, \infty)$			
(b) M1: Deduces that the solution to $\mathrm{f}(x)=\frac{1}{2} x+30$ can be found by solving $-2(3-x)+5=\frac{1}{2} x+30$ M1: Correct method used to solve their equation. Multiplies out bracket/ collects like terms A1: $x=\frac{62}{3}$ only. Do not allow 20.6			
(c) M1: Deduces that two distinct roots occurs when $y=k$ intersects $y=\mathrm{f}(x)$ in two places. This may be implied by the sight of either end point. Score for sight of either $k>5$ or $k \leqslant 11$ A1: Correct solution only $\{k: k \in \mathbb{R}, 5<k \leqslant 11\}$			

Question	Scheme	Marks	AOs
12(a)	Uses $\cos ^{2} x=1-\sin ^{2} x \Rightarrow 3 \sin ^{2} x+\sin x+8=9\left(1-\sin ^{2} x\right)$	M1	3.1a
	$\Rightarrow 12 \sin ^{2} x+\sin x-1=0$	A1	1.1b
	$\Rightarrow(4 \sin x-1)(3 \sin x+1)=0$	M1	1.1b
	$\Rightarrow \sin x=\frac{1}{4},-\frac{1}{3}$	A1	1.1b
	Uses arcsin to obtain two correct values	M1	1.1b
	All four of $x=14.48^{\circ}, 165.52^{\circ},-19.47^{\circ},-160.53^{\circ}$	A1	1.1b
		(6)	
(b)	Attempts $2 \theta-30^{\circ}=-19.47^{\circ}$	M1	3.1a
	$\Rightarrow \theta=5.26^{\circ}$	A1ft	1.1b
		(2)	
(8 marks)			
Notes:			
(a) M1: Substitutes $\cos ^{2} x=1-\sin ^{2} x$ into $3 \sin ^{2} x+\sin x+8=9 \cos ^{2} x$ to create a quadratic equation in just $\sin x$			
A1: 12 M1: Att inc A1: \sin M1: Ob A1: All	$x+\sin x-1=0$ or exact equivalent pts to solve their quadratic equation in $\sin x$ by a suitable method factorisation, formula or completing the square. $=\frac{1}{4},-\frac{1}{3}$ s two correct values for their $\sin x=k$ ur of $x=14.48^{\circ}, 165.52^{\circ},-19.47^{\circ},-160.53^{\circ}$	se could	
(b) M1: For setting $2 \theta-30^{\circ}=$ their ${ }^{\prime}-19.47^{\circ}$ A1ft: $\theta=5.26^{\circ}$ but allow a follow through on their ' -19.47° '			

Question	Scheme	Marks	AOs
13(a)	$R=\sqrt{109}$	B1	1.1b
	$\tan \alpha=\frac{3}{10}$	M1	1.1b
	$\alpha=16.70^{\circ}$ so $\sqrt{109} \cos \left(\theta+16.70^{\circ}\right)$	A1	1.1b
		(3)	
(b)	(i) $\quad \begin{aligned} & \text { e.g } H=11-10 \cos (80 t)^{\circ}+3 \sin (80 t)^{\circ} \text { or } \\ & H=11-\sqrt{109} \cos (80 t+16.70)^{\circ}\end{aligned}$	B1	3.3
	(ii) $11+\sqrt{109}$ or 21.44 m	B1ft	3.4
		(2)	
(c)	Sets $80 t+$ "16.70" $=540$	M1	3.4
	$t=\frac{540-" 16.70 "}{80}=(6.54)$	M1	1.1b
	$t=6 \mathrm{mins} 32$ seconds	A1	1.1b
		(3)	
(d)	Increase the ' 80 ' in the formula For example use $H=11-10 \cos (90 t)^{\circ}+3 \sin (90 t)^{\circ}$		3.3
		(1)	
(9 marks)			
Notes:			
(a) B1: $\quad R=\sqrt{109}$ Do not allow decimal equivalents M1: Allow for $\tan \alpha= \pm \frac{3}{10}$ A1: $\quad \alpha=16.70^{\circ}$			
(b)(i) B1: see scheme (b)(ii) B1ft: their $11+$ their $\sqrt{109}$ Allow decimals here.			
(c) M1: Sets $80 t+" 16.70 "=540$. Follow through on their 16.70 M1: \quad Solves their $80 t+" 16.70 "=540$ correctly to find t A1: $t=6 \mathrm{mins} 32$ seconds			
(d) B1: States that to increase the speed of the wheel the 80 's in the equation would need to be increased.			

Question	Scheme	Marks	AOs
14(a)	Sets $500=\pi r^{2} h$	B1	2.1
	Substitute $h=\frac{500}{\pi r^{2}}$ into $S=2 \pi r^{2}+2 \pi r h=2 \pi r^{2}+2 \pi r \times \frac{500}{\pi r^{2}}$	M1	2.1
	Simplifies to reach given answer $S=2 \pi r^{2}+\frac{1000}{r} *$	A1*	1.1b
		(3)	
(b)	Differentiates S with both indices correct in $\frac{\mathrm{d} S}{\mathrm{~d} r}$	M1	3.4
	$\frac{\mathrm{d} S}{\mathrm{~d} r}=4 \pi r-\frac{1000}{r^{2}}$	A1	1.1b
	Sets $\frac{\mathrm{d} S}{\mathrm{~d} r}=0$ and proceeds to $r^{3}=k, k$ is a constant	M1	2.1
	Radius $=4.30 \mathrm{~cm}$	A1	1.1b
	Substitutes their $r=4.30$ into $h=\frac{500}{\pi r^{2}} \Rightarrow$ Height $=8.60 \mathrm{~cm}$	A1	1.1b
		(5)	
(c)	States a valid reason such as - The radius is too big for the size of our hands - If $r=4.3 \mathrm{~cm}$ and $h=8.6 \mathrm{~cm}$ the can is square in profile. All drinks cans are taller than they are wide - The radius is too big for us to drink from - They have different dimensions to other drinks cans and would be difficult to stack on shelves with other drinks cans	B1	3.2a
		(1)	
9 marks			
Notes:			
(a) B1: Uses the correct volume formula with $V=500$. Accept $500=\pi r^{2} h$ M1: Substitutes $h=\frac{500}{\pi r^{2}}$ or $r h=\frac{500}{\pi r}$ into $S=2 \pi r^{2}+2 \pi r h$ to get S as a function of r A1*: $\quad S=2 \pi r^{2}+\frac{1000}{r}$ Note that this is a given answer.			
(b) M1: Di A1: $\frac{\mathrm{d} S}{\mathrm{~d}}$ M1: Se A1: $\quad R$ A1: H	rentiates the given S to reach $\frac{\mathrm{d} S}{\mathrm{~d} r}=A r \pm \mathrm{Br}^{-2}$ $4 \pi r-\frac{1000}{r^{2}}$ or exact equivalent $\frac{\mathrm{d} S}{\mathrm{~d} r}=0$ and proceeds to $r^{3}=k, k$ is a constant wrt 4.30 cm awrt 8.60 cm		
(c)			

Question	Scheme	Marks	AOs
15	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{15}{2} x^{\frac{1}{2}}-9$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Substitutes $x=4 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=6$	M1	2.1
	Uses (4,15) and gradient $\Rightarrow y-15=6(x-4)$	M1	2.1
	Equation of l is $y=6 x-9$	A1	1.1b
	Area $R=\int_{0}^{4}\left(5 x^{\frac{3}{2}}-9 x+11\right)-(6 x-9) \mathrm{d} x$	M1	3.1a
	$=\left[2 x^{\frac{5}{2}}-\frac{15}{2} x^{2}+20 x(+c)\right]_{0}^{4}$	A1	1.1b
	Uses both limits of 4 and 0 $\left[2 x^{\frac{5}{2}}-\frac{15}{2} x^{2}+20 x\right]_{0}^{4}=2 \times 4^{\frac{5}{2}}-\frac{15}{2} \times 4^{2}+20 \times 4-0$	M1	2.1
	Area of $R=24$ *	A1*	1.1b
	Correct notation with good explanations	A1	2.5
		(10)	
(10 marks)			

Question 15 continued

Notes:

M1: Differentiates $5 x^{\frac{3}{2}}-9 x+11$ to a form $A x^{\frac{1}{2}}+B$
A1: $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{15}{2} x^{\frac{1}{2}}-9$ but may not be simplified
M1: Substitutes $x=4$ in their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to find the gradient of the tangent
M1: Uses their gradient and the point $(4,15)$ to find the equation of the tangent
A1: \quad Equation of l is $y=6 x-9$
M1: Uses Area $R=\int_{0}^{4}\left(5 x^{\frac{3}{2}}-9 x+11\right)-(6 x-9) \mathrm{d} x$ following through on their $y=6 x-9$ Look for a form $A x^{\frac{5}{2}}+B x^{2}+C x$
A1: $\quad=\left[2 x^{\frac{5}{2}}-\frac{15}{2} x^{2}+20 x(+c)\right]_{0}^{4}$ This must be correct but may not be simplified
M1: Substitutes in both limits and subtracts
A1*: Correct area for $R=24$
A1: Uses correct notation and produces a well explained and accurate solution. Look for

- Correct notation used consistently and accurately for both differentiation and integration
- Correct explanations in producing the equation of l. See scheme.
- Correct explanation in finding the area of R. In way 2 a diagram may be used.

Alternative method for the area using area under curve and triangles. (Way 2)
M1: \quad Area under curve $=\int_{0}^{4}\left(5 x^{\frac{3}{2}}-9 x+11\right)=\left[A x^{\frac{5}{2}}+B x^{2}+C x\right]_{0}^{4}$
A1: $\quad=\left[2 x^{\frac{5}{2}}-\frac{9}{2} x^{2}+11 x\right]_{0}^{4}=36$
M1: This requires a full method with all triangles found using a correct method
Look for Area $R=$ their $36-\frac{1}{2} \times 15 \times\left(4-\right.$ their $\left.\frac{3}{2}\right)+\frac{1}{2} \times$ their $9 \times$ their $\frac{3}{2}$

Question	Scheme	Marks	AOs
16(a)	Sets $\frac{1}{P(11-2 P)}=\frac{A}{P}+\frac{B}{(11-2 P)}$	B1	1.1a
	Substitutes either $P=0$ or $P=\frac{11}{2}$ into $1=A(11-2 P)+B P \Rightarrow A$ or B	M1	1.1 b
	$\frac{1}{P(11-2 P)}=\frac{1 / 11}{P}+\frac{2 / 11}{(11-2 P)}$	A1	1.1b
		(3)	
(b)	Separates the variables $\int \frac{22}{P(11-2 P)} \mathrm{d} P=\int 1 \mathrm{~d} t$	B1	3.1a
	Uses (a) and attempts to integrate $\int \frac{2}{P}+\frac{4}{(11-2 P)} \mathrm{d} P=t+c$	M1	1.1b
	$2 \ln P-2 \ln (11-2 P)=t+c$	A1	1.1b
	Substitutes $t=0, P=1 \Rightarrow t=0, P=1 \Rightarrow c=(-2 \ln 9)$	M1	3.1a
	Substitutes $P=2 \Rightarrow t=2 \ln 2+2 \ln 9-2 \ln 7$	M1	3.1a
	Time $=1.89$ years	A1	3.2a
		(6)	
(c)	Uses \ln laws $\begin{gathered} 2 \ln P-2 \ln (11-2 P)=t-2 \ln 9 \\ \Rightarrow \ln \left(\frac{9 P}{11-2 P}\right)=\frac{1}{2} t \end{gathered}$	M1	2.1
	$\begin{aligned} & \text { Makes 'P' the subject } \begin{aligned} & \Rightarrow\left(\frac{9 P}{11-2 P}\right)=\mathrm{e}^{\frac{1}{2} t} \\ & \Rightarrow 9 P=(11-2 P) \mathrm{e}^{\frac{1}{2} t} \\ & \Rightarrow P=\mathrm{f}\left(\mathrm{e}^{\frac{1}{2} t}\right) \text { or } \Rightarrow P=\mathrm{f}\left(\mathrm{e}^{-\frac{1}{2} t}\right) \end{aligned} . \end{aligned}$	M1	2.1
	$\Rightarrow P=\frac{11}{2+9 \mathrm{e}^{-\frac{1}{2} t}} \Rightarrow A=11, B=2, C=9$	A1	1.1b
		(3)	
(12 marks)			

Question 16 continued

Notes:

(a)

B1: \quad Sets $\frac{1}{P(11-2 P)}=\frac{A}{P}+\frac{B}{(11-2 P)}$
M1: Substitutes $P=0$ or $P=\frac{11}{2}$ into $1=A(11-2 P)+B P \Rightarrow A$ or B
Alternatively compares terms to set up and solve two simultaneous equations in A and B
A1: $\quad \frac{1}{P(11-2 P)}=\frac{1 / 11}{P}+\frac{2 / 11}{(11-2 P)}$ or equivalent $\frac{1}{P(11-2 P)}=\frac{1}{11 P}+\frac{2}{11(11-2 P)}$
Note: The correct answer with no working scores all three marks.
(b)

B1: Separates the variables to reach $\int \frac{22}{P(11-2 P)} \mathrm{d} P=\int 1 \mathrm{~d} t$ or equivalent
M1: Uses part (a) and $\int \frac{A}{P}+\frac{B}{(11-2 P)} \mathrm{d} P=A \ln P \pm C \ln (11-2 P)$
A1: Integrates both sides to form a correct equation including a ' c ' Eg
$2 \ln P-2 \ln (11-2 P)=t+c$
M1: \quad Substitutes $t=0$ and $P=1$ to find c
M1: Substitutes $P=2$ to find t. This is dependent upon having scored both previous M's
A1: \quad Time $=1.89$ years
(c)

M1: Uses correct \log laws to move from $2 \ln P-2 \ln (11-2 P)=t+c$ to $\ln \left(\frac{P}{11-2 P}\right)=\frac{1}{2} t+d$ for their numerical ' c '
M1: Uses a correct method to get P in terms of $\mathrm{e}^{\frac{1}{2} t}$
This can be achieved from $\ln \left(\frac{P}{11-2 P}\right)=\frac{1}{2} t+d \Rightarrow \frac{P}{11-2 P}=\mathrm{e}^{\frac{1}{2} t+d}$ followed by cross multiplication and collection of terms in P (See scheme)
Alternatively uses a correct method to get P in terms of $\mathrm{e}^{-\frac{1}{2} t}$ For example
$\frac{P}{11-2 P}=\mathrm{e}^{\frac{1}{2} t+d} \Rightarrow \frac{11-2 P}{P}=\mathrm{e}^{-\left(\frac{1}{2} t+d\right)} \Rightarrow \frac{11}{P}-2=\mathrm{e}^{-\left(\frac{1}{2} t+d\right)} \Rightarrow \frac{11}{P}=2+\mathrm{e}^{-\left(\frac{1}{2} t+d\right)}$ followed by division
A1: Achieves the correct answer in the form required. $P=\frac{11}{2+9 \mathrm{e}^{-\frac{1}{2} t}} \Rightarrow A=11, B=2, C=9$ oe

