DIFFERENTIATION

C4

1

2

- A curve is given by the parametric equations $x = t^2 + 1$, $y = \frac{4}{t}$. **a** Write down the coordinates of the point on the curve where t = 2. **b** Find the value of t at the point on the curve with coordinates $(\frac{5}{4}, -8)$. A curve is given by the parametric equations $x = 1 + \sin t$, $y = 2\cos t$, $0 \le t < 2\pi$. **a** Write down the coordinates of the point on the curve where $t = \frac{\pi}{2}$. **b** Find the value of t at the point on the curve with coordinates $(\frac{3}{2}, -\sqrt{3})$. 3 Find a cartesian equation for each curve, given its parametric equations. **a** x = 3t, $y = t^2$ **b** x = 2t, $y = \frac{1}{t}$ **c** $x = t^3$, $y = 2t^2$ **d** $x = 1 - t^2$, y = 4 - t **e** x = 2t - 1, $y = \frac{2}{t^2}$ **f** $x = \frac{1}{t - 1}$, $y = \frac{1}{2 - t}$ A curve has parametric equations 4 x = 2t + 1, $v = t^2$. **a** Find a cartesian equation for the curve. **b** Hence, sketch the curve. 5 Find a cartesian equation for each curve, given its parametric equations. **a** $x = \cos \theta$, $y = \sin \theta$ **b** $x = \sin \theta$, $y = \cos 2\theta$ **c** $x = 3 + 2\cos \theta$, $y = 1 + 2\sin \theta$ **d** $x = 2 \sec \theta$, $y = 4 \tan \theta$ **e** $x = \sin \theta$, $y = \sin^2 2\theta$ **f** $x = \cos \theta$, $y = \tan^2 \theta$ 6 A circle has parametric equations $x = 1 + 3\cos\theta$, $y = 4 + 3\sin\theta$, $0 \le \theta < 2\pi$.
 - **a** Find a cartesian equation for the circle.
 - **b** Write down the coordinates of the centre and the radius of the circle.
 - c Sketch the circle and label the points on the circle where θ takes each of the following values:

$$0, \ \frac{\pi}{4}, \ \frac{\pi}{2}, \ \frac{3\pi}{4}, \ \pi, \ \frac{5\pi}{4}, \ \frac{3\pi}{2}, \ \frac{7\pi}{4}$$

- 7 Write down parametric equations for a circle
 - **a** centre (0, 0), radius 5,
 - **b** centre (6, -1), radius 2,
 - **c** centre (a, b), radius r, where a, b and r are constants and r > 0.
- For each curve given by parametric equations, find a cartesian equation and hence, sketch the 8 curve, showing the coordinates of any points where it meets the coordinate axes.
 - **b** $x = 1 \sin \theta$, $y = 2 \cos \theta$, $0 \le \theta < 2\pi$ **a** x = 2t, y = 4t(t-1)**d** x = t + 1, $y = \frac{2}{t}$ **c** x = t - 3, $v = 4 - t^2$

© Solomon Press