C2 Integration

1
$\mathrm{f}(x) \equiv 3+4 x-x^{2}$.
a Express $\mathrm{f}(x)$ in the form $a(x+b)^{2}+c$, stating the values of the constants a, b and c.
b State the coordinates of the turning point of the curve $y=\mathrm{f}(x)$.
c Find the area of the region enclosed by the curve $y=\mathrm{f}(x)$ and the line $y=3$.
2 a Evaluate $\int_{1}^{2} \frac{8}{x^{3}} \mathrm{~d} x$.

The diagram shows the curve with the equation $y=\frac{8}{x^{3}}, x>0$.
b Using your answer to part a, find the area of the shaded region bounded by the curve, the lines $y=1$ and $y=8$ and the y-axis.

3

The diagram shows the curve $y=5 x-2 x^{2}$ and the normal to the curve at the point $P(1,3)$.
a Find an equation of the normal to the curve at P.
The shaded region is bounded by the curve, the normal to the curve at P and the y-axis.
b Show that the area of the shaded region is $\frac{5}{3}$.
4

The diagram shows the curve C with the equation $y=\frac{4-x^{2}}{x^{2}}, x>0$, and the straight line l.
a Find the coordinates of the point P where C crosses the x-axis.
The line l has gradient -3 and intersects C at the points P and Q.
b Find the coordinates of the point Q.
c Show that the area of the shaded region enclosed by C and l is $\frac{1}{2}$.

