1 a Expand $(1-x)^{\frac{1}{2}},|x|<1$, in ascending powers of x up to and including the term in x^{3}.
b By substituting $x=0.01$ in your expansion, find the value of $\sqrt{11}$ correct to 9 significant figures.

2 The series expansion of $(1+8 x)^{\frac{1}{2}}$, in ascending powers of x up to and including the term in x^{3}, is

$$
1+4 x+a x^{2}+b x^{3},|x|<\frac{1}{8}
$$

a Find the values of the constants a and b.
b Use the expansion, with $x=0.01$, to find the value of $\sqrt{3}$ to 5 decimal places.

3 a Expand $(9-6 x)^{\frac{1}{2}},|x|<\frac{3}{2}$, in ascending powers of x up to and including the term in x^{3}, simplifying the coefficient in each term.
b Use your expansion with a suitable value of x to find the value of $\sqrt{8.7}$ correct to 7 significant figures.
$4 \quad$ a Expand $(1+6 x)^{\frac{1}{3}},|x|<\frac{1}{6}$, in ascending powers of x up to and including the term in x^{3}.
b Use your expansion, with $x=0.004$, to find the cube root of 2 correct to 7 significant figures.
5 a Expand $(1+2 x)^{-3}$ in ascending powers of x up to and including the term in x^{3} and state the set of values of x for which the expansion is valid.
b Hence, or otherwise, find the series expansion in ascending powers of x up to and including the term in x^{3} of $\frac{1+3 x}{(1+2 x)^{3}}$.

6 Find the coefficient of x^{2} in the series expansion of $\frac{2+x}{\sqrt{4-2 x}},|x|<2$.
$7 \quad$ a Find the values of A and B such that

$$
\frac{2-11 x}{1-5 x+4 x^{2}} \equiv \frac{A}{1-x}+\frac{B}{1-4 x}
$$

b Hence, find the series expansion of $\frac{2-11 x}{1-5 x+4 x^{2}}$ in ascending powers of x up to and including the term in x^{3} and state the set of values of x for which the expansion is valid.

8

$$
\mathrm{f}(x) \equiv \frac{4-17 x}{(1+2 x)(1-3 x)^{2}},|x|<\frac{1}{3}
$$

a Express $\mathrm{f}(x)$ in partial fractions.
b Hence, or otherwise, find the series expansion of $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{3}.

9 The first three terms in the expansion of $(1+a x)^{b}$, in ascending powers of x, for $|a x|<1$, are

$$
1-6 x+24 x^{2}
$$

a Find the values of the constants a and b.
b Find the coefficient of x^{3} in the expansion.

