1 Find the binomial expansion of each of the following in ascending powers of x up to and including the term in x^{3}, for $|x|<1$.
a $(1+x)^{-1}$
b $(1+x)^{\frac{1}{2}}$
c $2(1+x)^{-3}$
d $(1+x)^{\frac{2}{3}}$
e $\sqrt[3]{1-x}$
f $\frac{1}{(1+x)^{2}}$
g $\frac{1}{4(1-x)^{4}}$
h $\frac{3}{\sqrt{1-x}}$

2 Expand each of the following in ascending powers of x up to and including the term in x^{3} and state the set of values of x for which each expansion is valid.
a $(1+2 x)^{\frac{1}{2}}$
b $(1-3 x)^{-1}$
c $(1-4 x)^{-\frac{1}{2}}$
d $\left(1+\frac{1}{2} x\right)^{-3}$
e $(1-6 x)^{\frac{1}{3}}$
f $\left(1+\frac{1}{4} x\right)^{-4}$
g $(1+2 x)^{\frac{3}{2}}$
h $(1-3 x)^{-\frac{4}{3}}$

3 a Expand $(1-2 x)^{\frac{1}{2}},|x|<\frac{1}{2}$, in ascending powers of x up to and including the term in x^{3}.
b By substituting a suitable value of x in your expansion, find an estimate for $\sqrt{0.98}$
c Show that $\sqrt{0.98}=\frac{7}{10} \sqrt{2}$ and hence find the value of $\sqrt{2}$ correct to 8 significant figures.
4 Expand each of the following in ascending powers of x up to and including the term in x^{3} and state the set of values of x for which each expansion is valid.
a $(2+x)^{-1}$
b $(4+x)^{\frac{1}{2}}$
c $(3-x)^{-3}$
d $(9+3 x)^{\frac{1}{2}}$
e $(8-24 x)^{\frac{1}{3}}$
f $(4-3 x)^{-1}$
g $(4+6 x)^{-\frac{1}{2}}$
h $(3+2 x)^{-2}$

5 a Expand $(1+2 x)^{-1},|x|<\frac{1}{2}$, in ascending powers of x up to and including the term in x^{3}.
b Hence find the series expansion of $\frac{1-x}{1+2 x},|x|<\frac{1}{2}$, in ascending powers of x up to and including the term in x^{3}.

6 Find the first four terms in the series expansion in ascending powers of x of each of the following and state the set of values of x for which each expansion is valid.
a $\frac{1+3 x}{1-x}$
b $\frac{2 x-1}{(1+4 x)^{2}}$
c $\frac{3+x}{2-x}$
d $\frac{1-x}{\sqrt{1+2 x}}$

7 a Express $\frac{x-2}{(1-x)(1-2 x)}$ in partial fractions.
b Hence find the series expansion of $\frac{x-2}{(1-x)(1-2 x)}$ in ascending powers of x up to and including the term in x^{3} and state the set of values of x for which the expansion is valid.

8 By first expressing $\mathrm{f}(x)$ in partial fractions, find the series expansion of $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{3} and state the set of values of x for which it is valid.
a $\mathrm{f}(x) \equiv \frac{4}{(1+x)(1-3 x)}$
b $\mathrm{f}(x) \equiv \frac{1-6 x}{1+3 x-4 x^{2}}$
c $\mathrm{f}(x) \equiv \frac{5}{2-3 x-2 x^{2}}$
d $\mathrm{f}(x) \equiv \frac{7 x-3}{x^{2}-4 x+3}$
e $\mathrm{f}(x) \equiv \frac{3+5 x}{(1+3 x)(1+x)^{2}}$
f $\mathrm{f}(x) \equiv \frac{2 x^{2}+4}{2 x^{2}+x-1}$

