

QQQ - PureYr2 - Chapter 9 - Differentiation (v2)

Total Marks: 52

(52 = Platinum, 47 = Gold, 42 = Silver, 36 = Bronze)

1.

The current, I amps, in an electric circuit at time t seconds is given by

$$I = 16 - 16(0.5)^t$$
, $t \ge 0$.

Use differentiation to find the value of $\frac{dI}{dt}$ when t = 3.

Give your answer in the form $\ln a$, where a is a constant.

(5)

2.

(a) Differentiate with respect to x

(i)
$$x^2e^{3x+2}$$
, (4)

(ii)
$$\frac{\cos(2x^3)}{3x}$$
.

(4)

(b) Given that $x = 4 \sin(2y + 6)$, find $\frac{dy}{dx}$ in terms of x.

(5)

3.

Given that $x = \sec 4y$, find

(a)
$$\frac{dy}{dx}$$
 in terms of y.

(2 marks)

(b) Show that $\frac{dy}{dx} = \frac{k}{x\sqrt{x^2 - 1}}$, where k is a constant which should be found.

(3 marks)

4.

The curve C has equation $y = x^3 + 6x^2 - 12x + 6$.

(a) Show that C is concave on the interval [-5, -3].

(3 marks)

(b) Find the coordinates of the point of inflection.

(3 marks)

5.

A curve C has equation $4^x = 2xy$ for x > 0

Find the exact value of $\frac{dy}{dx}$ at the point C with coordinates (2, 4).

(5 marks)

6.

A curve has parametric equations $x = \cos 2t$, $y = \sin t$, $-\pi \le t \le \pi$.

(a) Find an expression for $\frac{dy}{dx}$ in terms of t.

Leave your answer as a single trigonometric ratio.

(3 marks)

(b) Find an equation of the normal to the curve at the point A where $t = -\frac{5\pi}{6}$.

(5 marks)

7.

The volume of a sphere $V \, \mathrm{cm}^3$ is related to its radius $r \, \mathrm{cm}$ by the formula $V = \frac{4}{3} \pi r^3$. The surface area of the sphere is also related to the radius by the formula $S = 4\pi r^2$. Given that the rate of decrease in surface area, in $\mathrm{cm}^2 \, \mathrm{s}^{-1}$, is $\frac{\mathrm{d}S}{\mathrm{d}t} = -12$,

find the rate of decrease of volume $\frac{dV}{dt}$

(4 marks)

8.

(a) Given that $f(x) = \sin x$, show that

$$f'(x) = \lim_{h \to 0} \left(\left(\frac{\cos h - 1}{h} \right) \sin x + \frac{\sin h}{h} \cos x \right)$$

(4 marks)

(b) Hence prove that $f'(x) = \cos x$.

(2 marks)

Solutions (all questions © Edexcel)

q1

$$\frac{dI}{dt} = -16\ln(0.5)0.5^{t}$$
At $t = 3$

$$\frac{dI}{dt} = -16\ln(0.5)0.5^{3}$$

$$= -2\ln 0.5 = \ln 4$$
M1 A1

M1 A1

[5]

q2

(a) (i)
$$\frac{d}{dx} \left(e^{3x+2} \right) = 3e^{3x+2} \quad \text{(or } 3e^2e^{3x} \right) \qquad \text{At any stage} \qquad B1$$

$$\frac{dy}{dx} = 3x^2 e^{3x+2} + 2x e^{3x+2} \qquad \text{Or equivalent} \qquad M1 \text{ A1+A1}$$
(4)
$$\frac{d}{dx} \left(\cos\left(2x^3\right) \right) = -6x^2 \sin\left(2x^3\right) \qquad \text{At any stage} \qquad M1 \text{ A1}$$

$$\frac{dy}{dx} = \frac{-18x^3 \sin\left(2x^3\right) - 3\cos\left(2x^3\right)}{9x^2} \qquad M1 \text{ A1}$$
Alternatively using the product rule for second M1 A1
$$y = (3x)^{-1} \cos\left(2x^3\right)$$

$$\frac{dy}{dx} = -3(3x)^{-2} \cos\left(2x^3\right) - 6x^2(3x)^{-1} \sin\left(2x^3\right)$$
Accept equivalent unsimplified forms

(b)
$$1 = 8\cos(2y+6)\frac{dy}{dx} \text{ or } \frac{dx}{dy} = 8\cos(2y+6)$$

$$\frac{dy}{dx} = \frac{1}{8\cos(2y+6)}$$
M1 A1
$$\frac{dy}{dx} = \frac{1}{8\cos\left(\arcsin\left(\frac{x}{4}\right)\right)} \left(=(\pm)\frac{1}{2\sqrt{(16-x^2)}}\right)$$
M1 A1 (5)

q3

Differentiates $x = \sec 4y$ to obtain $\frac{dx}{dy} = 4\sec 4y \tan 4y$	M1	1.1b	6th Differentiate reciprocal and inverse trigonometric functions.
Writes $\frac{dy}{dx} = \frac{1}{4 \sec 4y \tan 4y}$	A1	1.1b	
	(2)		
Use the identity $\tan^2 A + 1 = \sec^2 A$ to write	M1	2.2a	6th
$\tan 4y = \sqrt{\sec^2 4y - 1} = \sqrt{x^2 - 1}$			Differentiate reciprocal and
Attempts to substitute $\sec 4y = x$ and $\tan 4y = \sqrt{x^2 - 1}$ into $\frac{dy}{dx} = \frac{1}{4 \sec 4y \tan 4y}$	M1	2.2a	inverse trigonometric functions.
Correctly substitutes to find $\frac{dy}{dx} = \frac{1}{4x\sqrt{x^2 - 1}}$ and states $k = \frac{1}{4}$	A1	1.1b	
	(3)		

(5 marks)

$Finds \frac{dy}{dx} = 3x^2 + 12x - 12$	M1	1.1b	7th Use second derivatives to solve problems of concavity, convexity and points of inflection.
Finds $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x + 12$	M1	1.1b	
States that $\frac{d^2y}{dx^2} = 6x + 12 \le 0$ for all -5 ,, x ,, -3 and concludes	B1	3.2a	
this implies C is concave over the given interval.			
	(3)		
States or implies that a point of inflection occurs when $\frac{d^2y}{dx^2} = 0$	M1	3.1a	7th Use second derivatives to solve problems of concavity, convexity and points of inflection.
Finds $x = -2$	A1	1.1b	
Substitutes $x = -2$ into $y = x^3 + 6x^2 - 12x + 6$, obtaining $y = 46$	A1	1.1b	
	(3)		

(6 marks)

q5

Differentiates 4^x to obtain $4^x \ln 4$	M1	1.1b	7th
Differentiates $2xy$ to obtain $2x\frac{dy}{dx} + 2y$	M1	2.2a	Differentiate simple functions defined implicitly.
Rearranges $4^x \ln 4 = 2x \frac{dy}{dx} + 2y$ to obtain $\frac{dy}{dx} = \frac{4^x \ln 4 - 2y}{2x}$	A1	1.1b	
Makes an attempt to substitute (2, 4)	M1	1.1b	
States fully correct final answer: $4 \ln 4 - 2$ Accept $\ln 256 - 2$	A1	1.1b	

(5 marks)

q6

Finds $\frac{dx}{dt} = -2\sin 2t$ and $\frac{dy}{dt} = \cos t$	M1	1.1b	Oth Differentiate simple functions defined parametrically including application to tangents and normals.
Writes $-2\sin 2t = -4\sin t \cos t$	M1	2.2a	
Calculates $\frac{dy}{dx} = \frac{\cos t}{-4\sin t \cos t} = -\frac{1}{4}\operatorname{cose} t$	A1	1.1b	
	(3)		

Evaluates $\frac{dy}{dx}$ at $t = -\frac{5\pi}{6}$	A1 ft	1.1b	6th
			Differentiate simple functions
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{4\sin\left(-\frac{5\pi}{6}\right)} = \frac{1}{2}$			defined parametrically
(6)			including application to
Understands that the gradient of the tangent is $\frac{1}{2}$, and then the	M1 ft	1.1b	tangents and normals.
gradient of the normal is -2.			
Finds the values of x and y at $t = -\frac{5\pi}{6}$	M1 ft	1.1b	
$x = \cos\left(2 \times -\frac{5\pi}{6}\right) = \frac{1}{2} \text{ and } y = \sin\left(-\frac{5\pi}{6}\right) = -\frac{1}{2}$			
Attempts to substitute values into $y - y_1 = m(x - x_1)$	M1 ft	2.2a	
For example, $y + \frac{1}{2} = -2\left(x - \frac{1}{2}\right)$ is seen.			
Shows logical progression to simplify algebra, arriving at:	A1	2.4	
$y = -2x + \frac{1}{2}$ or $4x + 2y - 1 = 0$			
	(5)		

(8 marks)

Q7

Recognises the need to use the chain rule to find $\frac{dV}{dt}$ For example $\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dS} \times \frac{dS}{dt}$ is seen.	M1	3.1a	8th Construct differential equations in a range of contexts.
Finds $\frac{dV}{dr} = 4\pi r^2$ and $\frac{dS}{dr} = 8\pi r$	M1	2.2a	
Makes an attempt to substitute known values. For example, $\frac{dV}{dt} = \frac{4\pi r^2}{1} \times \frac{1}{8\pi r} \times \frac{-12}{1}$	M1	1.1b	
Simplifies and states $\frac{\mathrm{d}V}{\mathrm{d}t} = -6r$	A1	1.1b	

(4 marks)

Question 8

States $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{x+h-x}$	M1	3.1b	5th Differentiate simple trigonometric functions.
Makes correct substitutions: $f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$	M1	1.1b	
Uses the appropriate trigonometric addition formula to write $f'(x) = \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$	M1	2.2a	
Groups the terms appropriately $f'(x) = \lim_{h \to 0} \left(\left(\frac{\cos h - 1}{h} \right) \sin x + \left(\frac{\sin h}{h} \right) \cos x \right)$	A1	2.2a	
	(4)		
Explains that as $h \to 0$, $\frac{\cos h - 1}{h} \to 0$ and $\frac{\sin h}{h} \to 1$	M1	3.2b	5th Differentiate simple trigonometric functions.
Concludes that this leaves $0 \times \sin x + 1 \times \cos x$ So if $f(x) = \sin x$, $f'(x) = \cos x$	A1	3.2b	
	(2)		

(6 marks)