A Level Mathematics

U6 Chapter 9
Differentiation

Chapter Overview
1. Differentiate trigonometric, exponential and log functions.
2. Use chain, product and quotient rules.
3. Differentiate parametric equations.
4. Implicit Differentiation
5. Rates of change
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Differentiating trigonometric functions

You need to be able to differentiate sin x and cos x from first principles. 

Example 1 Prove, from first principles, that the derivative of sin x is cos x.
Things of helpfulness:
· As  and 
· 


If  then 

















Why does this result only hold in radians?
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Quickfire Questions:
 

 

 

 

 

 =

Example
[Textbook] A curve has equation . Find the stationary points on the curve in the interval .


















Test Your Understanding
A curve has equation . Find the stationary points on the curve in the interval .
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Differentiation exponential and log functions










Quickfire Questions
=

=

 =

 

 

 

 

 

 

 

 

 

 

 

 


 ‘Meatier’ Example:
A rabbit population  after  years can be modelled using . Determine after how many years the rate of population increase will reach 20,000 rabbits per year.












Test Your Understanding
1. Differentiate       (Hint: Expand first)








2. A child has headlice and his parents treat it using a special shampoo. The population  of headlice after  days can be modelled using 
a) Determine how many days have elapsed before the child has 20 headlice left.
b) Determine the rate of change of headlice after 3 days.
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Differentiating combinations of functions

[image: ]








The Chain Rule
The Chain Rule:





The chain rule allows us to differentiate a composite function, i.e. a function within a function.

Full Method:








Doing it mentally in one go:
(aka the ‘bla method’)
	



Further Practice
 

 

 

 

 

 

 

 

 

 

Test Your Understanding
C3 June 2011 Q1a
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[Textbook] Given that , find  at 

















Sometimes we might have  in terms of , but we want to find .
1. Find  when 





2. Find the gradient of  when 
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The Product Rule

As mentioned previously, the product rule is used, unsurprisingly, when we have a product of two functions.

The product rule:This is quite easy to remember. Differentiate one of the things but leave the other. Then do the other way round. Then add!
Since addition is commutative, it doesn’t matter which way round we do it.

If  then 


1. If , determine 




2. If , determine the coordinates of the turning point.







Product + Chain Rule Examples
1. If , 
show that , 
where  and  are constants to be determined.







2. Given that , find 








Test Your Understanding
Edexcel C3 Jan 2012 Q1a
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Edexcel C3 June 2013 Q5(c)


Find , simplifying your answer.
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The Quotient Rule
Just as we use the ‘product rule’ to differentiate a ‘product’, we use the ‘quotient rule’ to differentiate a ‘quotient’ (i.e. division).
The quotient rule:
If  then Memorisation Tips: “Bottoms first!” The denominator () is the first term seen in the new denominator and numerator. The denominator gets squared. Note that in the numerator, we have  instead of the  seen in the Product Rule.


1. If , find 





2. Find the stationary point of  , 








Test Your Understanding
Edexcel C3 Jan 2012 Q1a
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Edexcel C3 June 2012 Q3
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Differentiating other trigonometric functions
Differentiate 







More generally: 

Differentiate 






More generally: 






Differentiate 
(a)  







(b)  





Test Your Understanding So Far
Edexcel C3 June 2013(R) Q5b
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Making use of 
Often in exam questions, you will be given  in terms of , but want to find  in terms of .
The key is to make use of an appropriate trig identity, e.g:

Eg. Given that , express  in terms of .
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Further examplesNo Longer in Syllabus





1.  Show that if , then 







2. Given that  find 






Test Your Understanding
Edexcel C3 Jan 2011 Q8b,c[image: ]







Eg. Given that  , find 
No Longer in Syllabus






Parametric Differentiation
Recall from the previous chapter that parametric equations are when we define each of  and  (and possibly ) in terms of some separate parameter, e.g. .
If  and  are given as functions of a parameter , then

1. Find the gradient at the point  where , on the curve given parametrically by







2. Find the equation of the normal at the point  where , to the curve with parametric equations
 











Test Your Understanding
C4 June 2012 Q6
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Implicit Differentiation

You’re used to differentiating expressions where  is the subject, e.g. . The relationship between  and  is ‘explicit’ in the sense we can directly calculate from .
But what about implicit relations, e.g:



[image: ]

In general, when differentiating a function of , but with respect to , slap a  on the end. i.e.


Examples

 

 

 

 

 

 

 







Meatier Examples
[Textbook] Find  in terms of  and  where 









[Textbook] Find the value of  at the point , where  















Test Your Understanding
C4 Jan 2008 Q5 
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C4 June 2014(R) Q3
[image: ]




















Exercise 9H   Page 255-256


Using the second derivative

[image: ]Reminder: a point of inflection is where the concavity of a curve changes, i.e. concave to convex or vice versa, or informally, ‘swerving one way to swerving the other’.



Examples
1. Find the interval on which the function  is concave.







2. Show that  is convex for all real values of .













3. The curve  has equation Find the coordinates of the point of inflection.
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Relating Rates of Change

Eg. Determine the rate of change of the area  of a circle when the radius cm, given that the radius is changing at a rate of 

[image: ]	










A differential equation is an equation that can be used to calculate a rate of change over time (essentially, what you have just been doing!)

Textbook. In the decay of radioactive particles, the rate at which particles decay is proportional to the number of particles remaining. Write down a differential equation for the rate of change of the number of particles.










Textbook. Newton’s law of cooling states that the rate of loss of temperature of a body is proportional to the excess temperature of the body compared to its surroundings. Write an equation that expresses this law.










Textbook. The head of a snowman of radius  loses volume by evaporation at a rate proportional to its surface area. Assuming that the head is spherical, that the volume of a sphere is given by  and that the surface area is , write down a differential equation for the rate of change of radius of the snowman’s head.




















Further Example
Edexcel C4 June 2008 Q3
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Test Your Understanding
June 2012 Q2
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Differentiate with respect to x

(@) In (2 +3x+5),

@)
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Differentiate with respect to x, giving your answer in its simplest form,

2 In (3x), (O]





image8.png
Differentiate with respect to x, giving your answer in its simplest form,

®) sindx ®

-
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Figure 1

Figure 1 shows a sketch of the curve C which has equation
y=eVsindy, -Z<x<Z.
3 3

(@) Find the x-coordinate of the turning point P on C, for which x> 0.
Give your answer as a multiple of 7 ©
(5) Find an equation of the normal to C at the point where x 3
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(b) Show that %(secl 3x) can be written in the form

J(tan 3x + tan? 3x)

where y is a constant. 3)
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Given that

(b) find E in terms of y.
dy

(¢) Hence find % in terms of x.

X =sec 2y,

@

“
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Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

x="3sin2t, cos’t,  0stszm

(a) Show that % =3 tan ¢, where k is a constant to be determined.
®

(b) Find an equation of the tangent to C at the point where £ =

Wiy

Give your answer in the form y = ax + b, where a and b are constants.

@
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You're just differentiating the x°. But in fact, you're
differentiating both sides of the equation! (with respect to x)

40—

3 (by definition) differentiates to £

To differentiate implicitly you only need to know 2 things:
+ Differentiate each side of the equation (using chain rule if necessary).

+ Remember that y differentiated with respect to x is, by definition, %
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A curve is described by the equation

-4y = 121y,

(a) Find the coordinates of the two points on the curve where x = 8. (3)

(b) Find the gradient of the curve at each of these points. ©
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X242+ 10x+ 2y — 4y =10

(a) Find ‘%’ in terms of x and y, fully simplifying your answer. ~ (5)

(b) Find the valus ofy for which ‘%’ -o. ®
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Figure 2 shows a right circular cylindrical metal rod which is expanding as it is heated. After
t seconds the radius of the rod is x cm and the length of the rod is Sx cm.
The cross-sectional area of the rod is increasing at the constant rate of 0.032 cm?s-1.

dr
(a) Find - when the radius of the rod is 2 cm, giving your answer to 3 sigificant igures.

(O]
)

(b) Find the rate of increase of the volume of the rod when x =





image19.png
——

Figure 1
Figure 1 shows a metal cube which is expanding uniformly as it is heated.

At time  seconds, the length of each edge of the cube is x cm. and the volume of the cube
is Vem?

(@ Show that 3.
ax
o
Given that the volume, ¥ cm?, increases at a constant rate of 0.048 em’ 7,
® find & wheax =3
a
@

(c) find the rate of increase of the total surface area of the cube, in cm? s, when x = 8.

A3
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