U6 Chapter 4 Binomial Expansion

Chapter Overview

- 1. Binomial Series Recap
- 2. Binomial Expansion for negative/fractional powers
- 3. Constant is not 1: $(a + b)^n$
- 4. Using Partial Fractions

4 Sequences and series	4.1	Understand and use the binomial expansion of $(a + bx)^*$ for positive integer <i>n</i> ; the notations <i>n</i> ! and ^{<i>n</i>} C _{<i>T</i>} link to binomial probabilities. Extend to any rational <i>n</i> ,	Use of Pascal's triangle. Relation between binomial coefficients. Also be aware of alternative notations such as $\binom{n}{r}$ and ${}^{n}C_{r}$ Considered further in Paper 3 Section 4.1. May be used with the expansion of
		Extend to any rational <i>n</i> , including its use for approximation; be aware that the expansion is valid for $\left \frac{bx}{a}\right < 1$ (proof not required)	May be used with the expansion of rational functions by decomposition into partial fractions
			May be asked to comment on the range of validity.

The Binomial Series: Recap

Recall that if n is a positive integer

$$(a+b)^n = a^n + {}^n C_1 a^{n-1}b + {}^n C_2 a^{n-2}b^2 + \cdots$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots + n_{C_r}x^n$$

Also
$$(a+b)^n = a^n \left(1+\frac{b}{a}\right)^n$$

Examples

1. Expand $(1 + x)^{11}$ up to and including the term in x^3

2. Expand $(1 - 2x)^8$ up to and including the term in x^3

Binomial Expansion for Negative/ Fractional Powers

Example

1. Use the binomial expansion to find the first four terms of $\frac{1}{1+x}$

2. Use the binomial expansion to find the first four terms of $\sqrt{1-3x}$

An infinite expansion $(1 + x)^n$ is valid if |x| < 1

Quickfire Examples:

- 1. Expansion of $(1 + 2x)^{-1}$ valid if:
- 2. Expansion of $(1 x)^{-2}$ valid if:
- 3. Expansion of $\left(1 + \frac{1}{4}x\right)^{\frac{1}{2}}$ valid if:
- 4. Expansion of $\left(1-\frac{2}{3}x\right)^{-1}$ valid if:

Combining Expansions

(a) Use the binomial expansion to show that

$$\sqrt{\left(\frac{1+x}{1-x}\right)} \approx 1 + x + \frac{1}{2}x^2, \qquad |x| \le 1$$
(6)

Test Your Understanding

1. Find the binomial expansion of $\frac{1}{(1+4x)^2}$ up to an including the term in x^3 . State the values of x for which the expansion is valid.

2.

(a) Find the binomial expansion of

$$\sqrt{(1-8x)}, \qquad |x| < \frac{1}{8},$$

in ascending powers of x up to and including the term in x^3 , simplifying each term.

(6)

(b) Show that, when
$$x = \frac{1}{100}$$
, the exact value of $\sqrt{(1-8x)}$ is $\frac{\sqrt{23}}{5}$. (2)

(c) Substitute $x = \frac{1}{100}$ into the binomial expansion in part (a) and hence obtain an approximation to $\sqrt{23}$. Give your answer to 5 decimal places.

(3)

Extension

[STEP I 2011 Q6] Use the binomial expansion to show that the coefficient of x^r in the expansion of $(1 - x)^{-3}$ is $\frac{1}{2}(r + 1)(r + 2)$.

(i) Show that the coefficient of x^r in the expansion of $\frac{1-x+2x^2}{(1-x)^3}$ is $r^2 + 1$ and hence find the sum of the series

$$1 + \frac{2}{2} + \frac{5}{4} + \frac{10}{8} + \frac{17}{16} + \frac{26}{32} + \frac{37}{64} + \cdots$$

$$1 + 2 + \frac{9}{4} + 2 + \frac{25}{16} + \frac{9}{8} + \frac{49}{64}$$

Exercise 4A Page 96-97

Dealing with $(a + b)^n$

Remember
$$(a+b)^n = a^n \left(1+\frac{b}{a}\right)^n$$

Examples

1. Find first four terms in the binomial expansion of $\sqrt{4 + x}$. State the values of x for which the expansion is valid.

Quickfire First Step

What would be the first step in finding the Binomial expansion of each of these?

	First Step	Valid when?
1. $(2+x)^{-3}$		
2. $(9+2x)^{\frac{1}{2}}$		
3. $(8-x)^{\frac{1}{3}}$		
4. $(5-2x)^{-3}$		
5. $(16+3x)^{-\frac{1}{2}}$		

Test Your Understanding

(a) Find the binomial expansion of

$$\sqrt{9+8x}, |x| < \frac{9}{8}$$

in ascending powers of x, up to and including the term in x^2 . Give each coefficient as a simplified fraction.

(5)

(b) Use your expansion to estimate the value of $\sqrt{(11)}$, giving your answer as a single fraction.

(3)

Extension

[AEA 2006 Q1]

- (a) For |y| < 1, write down the binomial series expansion of $(1 y)^{-2}$ in ascending powers of y up to and including the term in y^3 .
- (b) Hence, or otherwise, show that

$$1 + \frac{2x}{1+x} + \frac{3x^2}{(1+x)^2} + \dots + \frac{rx^{r-1}}{(1+x)^{r-1}} + \dots$$

can be written in the form $(a + x)^n$. Write down the values of the integers a and n.

(c) Find the set of values of x for which the series in part (b) is convergent.

Using Partial Fractions

Example

1.

- a) Express $\frac{4-5x}{(1+x)(2-x)}$ as partial fractions.
- b) Hence show that the cubic approximation of $\frac{4-5x}{(1+x)(2-x)}$ is $2 \frac{7}{2}x + \frac{11}{4}x^2 \frac{25}{8}x^3$
- c) State the range of values of x for which the expansion is valid.

Test Your Understanding

[C4 June 2010 Q5]

10.

$$\frac{2x^2 + 5x - 10}{(x-1)(x+2)} \equiv A + \frac{B}{x-1} + \frac{C}{x+2}.$$

(a) Find the values of the constants A, B and C.

(4)

(b) Hence, or otherwise, expand $\frac{2x^2 + 5x - 10}{(x-1)(x+2)}$ in ascending powers of x, as far as the term in

 x^2 . Give each coefficient as a simplified fraction. (7)

Exercise 4C Page 102