Upper 6 Chapter 11
Integration
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INTEGRATION
Integration is the reverse of differentiation. We use known derivatives to integrate. 

The following are integrals that you should know:
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INTEGRALS OF THE FORM 
The following are integrals that you should know:
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USING TRIGONOMETRIC IDENTITIES
The following are identities that you should know:
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We can use these identities to transform an expression that cannot be integrated into one that can be integrated.

These first examples focus on manipulation of the identities rather than integration.
Examples 
1) 

2) 

3) 

4) 
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Further examples 
Show that
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More examples
Use the substitution  to find		












Example 4
Use the substitution  to find		












Edexcel will usually give you the substitution in the exam question.
However, if you are not provided with a substitution, a ‘rule of thumb’ is to replace expressions inside roots, powers or the denominator of a fraction by the variable u.
[image: ]INTEGRATION BY SUBSTITUTION AND DEFINITE INTEGRALS
When you use integration by substitution to evaluate a definite integral, you do not need to rewrite the expression in terms of . However, if you use the expression in terms of , you must replace the  limits with  limits.
Alternatively, you could convert the integral back to a function of  and use the original limits but this is usually messier!

Example 5
Calculate 
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Example 1
			
Example 2
Find			
Here, the choice of  must be  because  is difficult to integrate






Example 3
Find			
Here, the ‘trick’ is to write the integral as 
Again, the choice of  must be 
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Example 5
Find			
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SKILL #1: Integrating Standard Functio

There’s certain results you should be able to integrate straight off, by just thinking about
the opposite of differentiation.
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KILL #4: Reverse Chain Rule

c There’s certain more complicated expressions which look like the result of having
Pearson Pure MathematicsYear /A5 applied the chain rule. | call this process ‘consider then scale’:
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SKILL #5: Integration by Substituti

For some integrations involving a complicated expression, we can make a substitution
to turn it into an equivalent integration that is simpler. We wouldn’t be able to use
‘reverse chain rule’ on the following:

2

n Use the substitution u = 2x + 5 to find [ xV2x + 5 dx
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[ Test Your Understanding
Pt
How would we del with 15 the clg'sn e e
X x3 +2
‘Some manipulation to simplify Now integrate f — dx _— d X
: . x=1 x+1
——
LN pr——
P x-1 .
Contrast this with fT dx which can be
45
integrated more simply:
Pearson pure Mathematics ear 245
Fage 312313 x—1 1
dx=|1——dx=x—In|x|+C
[ x x
N :
*
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e Finding

eas

You're already familiar with the idea that definite integration gives you the
(signed) area bound between the curve and the x-axis.

a-“ Given your expanded integration skills, you can now find the area under a
greater variety of curves.

9
. - 9
[Textbook] The diagram shows part of the curve y T 2
The region R is bounded by the curve, the x-axis and the lines
x = 0 and x = 4, as shown in the diagram. Use integration to

find the area of R.

[N —
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Skill #9: Area between two curves

Ttk The g shows o the ey = el
e

X= U amtx = & ot e . U e
sl B

(This was presented in my Year 1 slides as an
y=f ‘alternative method’)
Y=g The areas under the two curves are

f‘ff(x) dx and f: g(x) dx. It therefore

follows the area between them (provided
the curves don’t overlap) is:

: 1 R ij(X) dx f;w) dx

b
Ero Tip: Ensure you have top
curve minus bottom curve. = (f(x) - g(x)) dx
a

[Textbook] The diagram shows part of the curves y = sin 2x and b4
¥ = sinx cos? x where 0 < x < g The region R is bounded by
the two curves. Use integration to find the area of R.

y = sin2x

Sidea7of72 3
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Test Your Understanding

e fra e

Figure 1

Figure 1 shows part of the curve y = . The region R is bounded by the curve, the x-

3
N (@+4%)
axis, and the lines x = 0 and x = 2, as shown shaded in Figure 1.

(a) Use integration to find the area of R. @
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11H

e e Skill #10: Trapezium Rule

Sometimes finding the
exact area under the
graph via integration is
difficult. Students who
have taken GCSE Maths
may be familiar with the
idea of approximating the
area under a graph by
dividing it into trapeziums
of equal width.

v er sy

Ingeneral: 4

b h
[rars5our20s s e+

B < srosmating e pT—
X2, e s hecun y = 1 g 4 s
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width of each trapezium

_
ydx =21+ 202+ 4 Y1) +yn)
a

/

b

Area under curve

is approximately

Trapezium Rule

In general: &

[[%  English (United Kingdom)

m We're approximating the region bounded between x = 1,

x = 3, the x-axis the curve y = x2, using 4 strips.

4+ Dividing a gap of

2 into 4 strips
means each strip
will be width 0.5





image40.png
b= G o Grmms SESm  Gww Gm Bp ©nmsinwmoio

= Eltayout~ NOoo| O £ Find
E:D; E/ ] Reset gjL‘Lﬁ>@'B - A::DE 25 Replace ~
- Slide~ & Section~ GO L) s A % Select~
Clipboard 5 Sides Font Paragraph Drawing Editing ~
51 =

Trapezium Rule

[ [re—— R

X2, e xms tecuney =

(a) Completethe table below with the value of y corresponding tox = 1.3, giving your
answer to 4 decimal places.

(1)

Ero Tip: You can generate table with Casio calcs . Mode — 3 (Table). Use ‘Alpha’ button to key in X within the function. Press =

x 1 1.1 1.2 1.4 15

‘ ¥y | 0.7071 ‘ 0.7591 ‘ 0.8090 - 0.9037 | 0.9487 ‘

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an

approximate value for
R
- dx
1 V(d+x)
If,‘“:{_;,f:;:;fm,, giving your answer to 3 decimal places.

) o o s e with o st o st

5 o o s ke i o s o s it of

) Fin e prcamag o g s s

You must show clearly each stage of your working.

Area ~ :
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Further Example

T

area]

GivenI = [@secx dx

Trapezium Rule: f:y dx = %h[yo +2(y1 4 -+ Yn-1) + ¥nl

a)
b)
<)

Find the exact value of I.
Use the trapezium rule with two strips to estimate I.
Use the trapezium rule with four strips to find a second estimate of I.

<) use he trapesium e wit four st ind  scond estimate o .

[
s aac el
[t A —

) ind theperceage err i sin eachestimate.

R

Sige 530172 [% English (United Kingdom)

T ]

d) Find the percentage error in using each estimate.
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Test Your Understanding

Edexcel C4 June

2014(R) Q2

Figure 1
Figure 1 shows a sketch of part of the curve with equation
y=Q2-xex,

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the
y-axis.

The table below shows corresponding values of x and y for y = (2 - x)e>.

x 0 05 1 15

¥ 2 4.077 7.380 10.043 0

(@) Use the trapezium rule with all the values of y in the table, to obtain an approximation for
the area of R, giving your answer to 2 decimal places

®

(5) Explain how the trapezium rule can be used to give a more accurate approximation for the
areaof R

o

(¢) Use calculus, showing each step in your working, to obtain an exact value for the area
of R. Give your answer in its simplest form.

®

(©)

Sally Cooper
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Integration with Parametric Equations

Pearson Pure Mathematics Year 2/4S.
Pages 319-522

Suppose we have the following parametric equations:
x=t?
y=t+1

To find the area under the curve, we want to determine to determine [ y dx.
The problem however is that y is in terms of ¢, not in terms of x.

Fro Memory Tip: No need to remember the whole
new formulae. Just remember that 2= dt = dx ,

pers which follows from the chain rule (and very
informally, you can see holds as the dt’s cancel)

Fiie

o e the o, we o et s [ 6
e bl nowes i . n s f .1 1 1 .

m Determine the area bound between the curve with parametric equations x = t?andy =t + 1,

it the x-axis, and the linesx = 0 and x = 3.

. dx — ax
ke = STEP 1: Find —
= -

<+——————————— STEP 2: Change limits

7 ple - @
STEP 3: Integrate
ettt E: Since we're now integrating
) in terms of £, we need to
Shenzm0 change the limits so they’re
e

interms of £.

== E
:
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Further Example

[
e ———
v sy et

Textbook] The curve C has parametric equations
e | (Textbook] p a

T ey Sy T PR Qo = a0dy x=t(1+1), y= 1_+t' t=0
= Pty A Find the exact area of the region R, bounded by C, the x-axis and the

linesx = 0andx = 2.

dx _
[ dt ~
e e T e D When x = 0,
Pt ’ When x = 2,
e m—

Recall that to integrate a
top-heavy fraction, use
long-division first.
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Further Example

S

Test Your Understas

)

®

Siide 58 0f 72

(i3

English (United Kingdom)

P2-Chp911-Integration.pptx - PowerPoint

Q Tell me what you want to do

£ Find

\N\oOoQof|

AL LDSo - D % Replace ~
%N =] A 1 Select~
Faragaph o dting

Test Your Understanding

Figure 2 shows a sketch of part of the curve C with parametric equations
Helping Hand:

The curve crosses the y-axis at the point 4 and crosses the x-axis at the point B. Z (a® a*(Ina)
X
x
(a) Show that 4 has coordinates (0, 3) @ Fde=21¢
(b) Find the x-coordinate of the point B. @ Ina

The region R, as shown shaded in Figure 2, is bounded by the curve C, the line x =—1 and the
s.
Use integration to find the exact area of R.

x-a

@

©)
)

Working paramerically.

E
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Exercise ?

b

Arange

Drawing

£ Find
B Replace
[ Select~

Editing

This exercise is not in the current version of the Pearson textbooks as the content was added
later. I have temporarily included the exercise subsequently produced by Pearson.

® 1 Thocurve Clas parametric oquations

rational constant to be found

@ 2 The curve C has parametric cquati
20,0

sin, =

‘The finite region R is bounded by
Find the exact area of R

@ 3 s

ph shows part of the curve C with

parametric equations x = (1 + 1), 3=l
Pis the point on the curve where 1

‘The line S'is the normal to Cat P.

a Find an equation of S. (S marks)
‘The shaded region Ris bounded by C, 5, the x-axis
and the line with equation x =

b Using integration, find the arca of R. (5 marks)

@) 4 The disgram shows the

e C with parametric quations

e down the value of a1 the point A where

the curve crosses the x-axis. (1 mark)

of the shaded
d the x-axis. (6 marks)

b Find. interms of
region bounded by C

hown has parametric equations

Scost, = 4sinf, 0% < 2n
of the curve at the point P
(marks)
on of the tangent to the curve
G marks)
 Find the exact area of the shaded

gion bounded by the curve, the x-axis and the

e curve and the

£ 0. Show that the exact

(6 marks)

o=

n bounded by the tangent PR, the curve and the x-axis.

(6 marks)

nes x =0 and x =4 is kVZ, where k is a

ANSWERS
1

netric equations
~iieR

e Lis a normal to the curve at the p
tersects the positive y-axis. Find the

t P where the

ct area of

and the x-axis,
7 marks)

“The curve shown in the d

im has parametric equatio

2 Show that the curve crosses the x-axis where

and (@ marks)

The fni
as shown

and the x-axis, %

b Show that theara Ris given by [+ ¥ = 2cost? i 3 marke)

© Use this integral to find the exa (4 marks)
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SKILL #11: Differential Equations  (we're on the home straight!)

St e cqutors et gt e 5 i ).

Differential equations are equations involving a mix of variables and
- d;
derivatives, e.g. y, x and ﬁ

. . - . d
‘Solving’ these equations means to get y in terms of x (with no ﬁ).

) ) d
o n Find the general solution to ﬁ =xy+y

STEP 1: Get y to the side ofi—i dividing
and x to the other side.

(vou may need to factorise to separate out ¥ first)

STEP 2: Integrate both sides with respect

d; L
to x. d—i dx simplifies to d (recall that (implicitly)

differentiating an expression in terms of y with respect to x
Differential Equations with Boundary Conditions

62

introduces a3, so integrating similarly would get rid of t)
[ [SER—— »
G it = 1 wheny = 3. esve ot snsver v oy = 1(5)

STEP 3: Make y the subject, if the question

asks.

Fro Tip: When you have ef®)+¢ = ef®ec it’s typical to write Aef ()
where A = e€ (noting that 4 is any positive constant since e< > 0)
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St e cqutors et gt e 5 i ).

. . d
n Find the general solution to (1 + x2) i =xtany

STEP 1: Get y to the side Of% dividing
and x to the other side.

(vou may need to factorise to separate out ¥ first)

B smanions 205 STEP 2: Integrate both sides with
respect to x.

(2 »ifrcential Equations with Boundary Conditions STEP 3: Make y the subject, if the question

asks.
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Key Points on Differential Equations

* Get y on to LHS by dividing (possibly factorising first).
« If after integrating you have In on the RHS, make your
constant of integration In k.

¢ Be sure to combine all your In’s together just as you did in C2.

< ety 45y i s i, E.g.:
e

" Inlx + 1| ~ Inlx| 21n|x+1|—ln|x| -

+ Sub i boundary conditions to work oUE your constant -
better o do sooner rather than later.

« B i pcns s e ¢ Sub in boundary conditions to work out your constant —
better to do sooner rather than later.

* Exam questions ¥ partial fractions combined with differential
* equations.

Pearson Pure Mathematics Year 2/4S.
Pages 324326
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Forming differential equations
S I 11 Differential equations are useful because regularly in real-life, the rate of change of a variable is
Pearson Pure Mathematics Year 2/AS based on its current value. For example in Year 1, we saw a property of exponential growth is that

Pages 324326

the rate of change is proportional to the current value:

The rate of increase of a rabbit population (with population P, where time
is t) is proportional to the current population.
Form a differential equation, and find its general solution.

popultion(ithpopulation P, uhere time
ene curent popiaton
Form 3 Giferntial sation, 20 find s enera soston.

(Notice by the way that e*t = (e")t, and since e* is a constant,
we could always write y = A - B*. i.e. The general solution is
‘any generic exponential function’, not just restricted to those
with e as the base. However it is customary to write Ae*t) z
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Hmmm Further Example

Form 3 Giferntial sation, 20 find s enera soston.

[Textbook] Water in a manufacturing plant is held in a large cylindrical tank of diameter 20m. Water

flows out of the bottom of the tank through a tap at a rate proportional to the cube root of the
volume.

. . dh 3
(a) Show that t minutes after the tap is opened, e —k¥/h for some constant k.

3

(b) Show that the general solution of this differential equation may be written h = (P — Qt)z,
where P and Q are constants.

Initially the height of the water is 27m. 10 minutes later, the height is 8m.

(c) Find the values of the constants P and Q.

(d) Find the time in minutes when the water is at a depth of 1m.

Sige 67072 [[X English (United Kingdom)
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Test Your Understanding

Edexcel C4 June 2005 Q8

Liqu pouring into a cont at a constant rate of 20 cm’
proportional to the volume of the liquid already in the container.

! and is leaking out at a rate

(@) Explain why. at time  scconds, the volume, I e, of liquid in the container satisfies the
differential equation
|

y
W r0-r, |®
ar

where k is a positive constant.

The container is initially empty.
(b) By solving the differential equation, show that

V=A+Be¥,
Teachers/Students: |
giving the values of 4 and B in terms of k. ©) recommend also looking at
Given also that & = 10 when =5, Edexcel Jan 2008 Q8 which
dr . . . has a part (a) similar to the
(¢) find the volume of liquid in the container at 10 s after the start. ®

previous example.

®)

©

otes 8 Comments
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