C2 Sequences and Series

1 The third and fourth terms of a geometric series are 27 and $20 \frac{1}{4}$ respectively.
a Find the first term of the series.
b Find the sum to infinity of the series.
2 The first three terms of a geometric series are $(k-8),(k+4)$ and $(3 k+2)$ respectively, where k is a positive constant.
a Find the value of k.
b Find the sixth term of the series.
c Show that the sum of the first ten terms of the series is 50857.3 to 1 decimal place.
3 The second and fifth terms of a geometric series are 75 and 129.6 respectively.
a Show that the first term of the series is 62.5
b Find the value of the tenth term of the series to 1 decimal place.
c Find the sum of the first 12 terms of the series to 1 decimal place.
4 a Prove that the sum, S_{n}, of the first n terms of a geometric series with first term a and common ratio r is given by

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

b A geometric series has first term 2 and common ratio $\sqrt{2}$.
Given that the sum of the first n terms of the series is $126(\sqrt{2}+1)$, find the value of n.
5 The first term of a geometric series is 18 and the sum to infinity of the series is 15 .
a Find the common ratio of the series.
b Find the third term of the series.
c Find the exact difference between the sum of the first eight terms of the series and the sum to infinity of the series.

6 The sum of the first n terms of a geometric series is given by $5\left(3^{n}-1\right)$.
a Show that the third term of the series is 90 .
b Find an expression for the nth term of the series in the form $k\left(3^{n}\right)$ where k is an exact fraction.
7

A student programs a computer to draw a series of straight lines with each line beginning at the end of the previous one and at right angles to it. The first line is 4 mm long and thereafter each line is 25% longer than the previous one, so that a spiral is formed as shown above.
a Find the length, in mm, of the eighth straight line drawn by the program.
b Find the total length of the spiral, in metres, when 20 straight lines have been drawn.

8 The second and fourth terms of a geometric series are 30 and 2.7 respectively.
Given that the common ratio, r, of the series is positive,
a find the value of r and the first term of the series,
b find the sum to infinity of the series.
$9 \quad$ a Evaluate $\quad \sum_{r=3}^{10} 3^{r}$.
b Show that $\sum_{r=1}^{15}\left(2^{r}-12 r\right)=64094$.
10 A geometric series has common ratio r and the nth term of the series is denoted by u_{n}.
Given that $u_{1}=64$ and that $u_{3}-u_{2}=20$,
a show that $16 r^{2}-16 r-5=0$,
b find the two possible values of r,
c find the fourth term of the series corresponding to each possible value of r.
d Taking the value of r such that the series converges, find the sum to infinity of the series.
11 A geometric series has first term 4 and common ratio $\frac{1}{2}$.
a Find the eighth term of the series as an exact fraction.
b Find the nth term of the series in the form 2^{y} where y is a function of n.
c Show that the sum of the first n terms of the series is $8-2^{3-n}$.
12 The sequence of terms $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{n}=4 \times 3^{n}, \quad n \geq 1 .
$$

a Find u_{6}.
b Find the smallest value of t such that the sum of the first t terms of the sequence is greater than 10^{25}.

13 The sum of the first and third terms of a geometric series is 150 . The sum of the second and fourth terms of the series is -75 .
a Find the first term and common ratio of the series.
b Find the sum to infinity of the series.
14 Three consecutive terms of an arithmetic series are a, b and ($3 a+4$) respectively.
a Find an expression for b in terms of a.
Given also that a, b and $(6 a+1)$ respectively are consecutive terms of a geometric series and that a and b are integers,
b find the values of a and b.
15 When a ball is dropped onto a horizontal floor it bounces such that it reaches a maximum height of 60% of the height from which it was dropped.
a Find the maximum height the ball reaches after its fourth bounce when it is initially dropped from 3 metres above the floor.
b Show that when the ball is dropped from a height of h metres above the floor it travels a total distance of $4 h$ metres before coming to rest.

