C1 Sequences and Series

1 Write down the first five terms of the sequences with nth terms, u_{n}, given for $n \geq 1$ by
a $u_{n}=4 n+5$
b $u_{n}=(n+1)^{2}$
c $u_{n}=2^{n}$
d $u_{n}=\frac{n}{n+1}$
e $u_{n}=n^{3}-2 n$
f $u_{n}=1-\frac{1}{3} n$
g $u_{n}=1-\frac{1}{2 n}$
h $u_{n}=32 \times\left(\frac{1}{2}\right)^{n}$

2 The nth term of each of the following sequences is given by $u_{n}=a n+b$, for $n \geq 1$.
Find the values of the constants a and b in each case.
a $4,7,10,13,16, \ldots$
b $0,7,14,21,28, \ldots$
c $16,14,12,10,8, \ldots$
d $0.4,1.7,3.0,4.3,5.6, \ldots$
e $100,83,66,49,32, \ldots$
f $-13,-5,3,11,19, \ldots$

3 Find a possible expression for the nth term of each of the following sequences.
a $1,6,11,16,21, \ldots$
b $3,9,27,81,243, \ldots$
c $2,8,18,32,50, \ldots$
d $\frac{1}{2}, 1,2,4,8, \ldots$
e $22,11,0,-11,-22, \ldots$
f $0,1,8,27,64, \ldots$
g $4,7,12,19,28, \ldots$
h $\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \frac{5}{11}, \ldots$
i $1,3,7,15,31, \ldots$

4 The nth term of a sequence, u_{n}, is given by

$$
u_{n}=c+3^{n-2}
$$

Given that $u_{3}=11$,
a find the value of the constant c,
b find the value of u_{6}.
5 The nth term of a sequence, u_{n}, is given by

$$
u_{n}=n(2 n+k)
$$

Given that $u_{6}=2 u_{4}-2$,
a find the value of the constant k,
b prove that for all values of $n, u_{n}-u_{n-1}=4 n+3$.
6 The nth term of a sequence, u_{n}, is given by

$$
u_{n}=k^{n}-3 .
$$

Given that $u_{1}+u_{2}=0$,
a find the two possible values of the constant k.
b For each value of k found in part a, find the corresponding value of u_{5}.
7 Write down the first four terms of each sequence.
a $u_{n}=u_{n-1}+4, n>1, u_{1}=3$
b $u_{n}=3 u_{n-1}+1, n>1, u_{1}=2$
c $u_{n+1}=2 u_{n}+5, \quad n>0, u_{1}=-2$
d $u_{n}=7-u_{n-1}, \quad n \geq 2, \quad u_{1}=5$
e $u_{n}=2\left(5-2 u_{n-1}\right), \quad n>1, u_{1}=-1$
f $u_{n}=\frac{1}{10}\left(u_{n-1}+20\right), \quad n \geq 2, \quad u_{1}=10$
g $\quad u_{n+1}=1-\frac{1}{3} u_{n}, \quad n \geq 1, \quad u_{1}=6$
h $\quad u_{n+1}=\frac{1}{2+u_{n}}, n \geq 1, \quad u_{1}=0$

8 In each case, write down a recurrence relation that would produce the given sequence.
a $5,9,13,17,21, \ldots$
b $1,3,9,27,81, \ldots$
c $62,44,26,8,-10, \ldots$
d $120,60,30,15,7.5, \ldots$
e $4,9,19,39,79, \ldots$
f $1,3,11,43,171, \ldots$

9 Given that the following sequences can be defined by recurrence relations of the form $u_{n}=a u_{n-1}+b, n>1$, find the values of the constants a and b for each sequence.
a $-4,-3,-1,3,11, \ldots$
b $0,8,4,6,5, \ldots$
c $7 \frac{3}{4}, 5 \frac{1}{2}, 4,3,2 \frac{1}{3}, \ldots$

10 For each of the following sequences, find expressions for u_{2} and u_{3} in terms of the constant k.
a $u_{n}=4 u_{n-1}+3 k, \quad n>1, \quad u_{1}=1$
b $u_{n+1}=k u_{n}+5, n>0, u_{1}=2$
c $u_{n}=4 u_{n-1}-k, n>1, u_{1}=k$
d $u_{n}=2-k u_{n-1}, \quad n \geq 2, \quad u_{1}=-1$
e $u_{n+1}=\frac{u_{n}}{k}, n \geq 1, u_{1}=4$
f $u_{n+1}=\sqrt[3]{61 k^{3}+u_{n}^{3}}, \quad n>0, u_{1}=k \sqrt[3]{3}$

11 A sequence is given by the recurrence relation

$$
u_{n}=\frac{1}{2}\left(k+3 u_{n-1}\right), \quad n>1, \quad u_{1}=2 .
$$

a Find an expression for u_{3} in terms of the constant k.
Given that $u_{3}=7$,
b find the value of k and the value of u_{4}.
12 For the sequences given by the following recurrence relations, find u_{4} and u_{1}.
a $u_{n}=3 u_{n-1}-2, n>1, u_{3}=10$
b $u_{n+1}=\frac{3}{4} u_{n}+2, n>0, \quad u_{3}=5$
c $u_{n+1}=0.2\left(1-u_{n}\right), n>0, u_{3}=-0.2$
d $u_{n}=\frac{1}{2} \sqrt{u_{n-1}}, n>1, u_{3}=1$

13 A sequence is defined by

$$
u_{n+1}=u_{n}+c, \quad n \geq 1, \quad u_{1}=2,
$$

where c is a constant. Given that $u_{5}=30$, find
a the value of c,
b an expression for u_{n} in terms of n.
14 The terms of a sequence $u_{1}, u_{2}, u_{3}, \ldots$ are given by

$$
u_{n}=3\left(u_{n-1}-k\right), \quad n>1,
$$

where k is a constant. Given that $u_{1}=-4$,
a find expressions for u_{2} and u_{3} in terms of k.
Given also that $u_{3}=7 u_{2}+3$, find
b the value of k,
c the value of u_{4}.
15 A sequence of terms $\left\{t_{n}\right\}$ is defined, for $n>1$, by the recurrence relation

$$
t_{n}=k t_{n-1}+2,
$$

where k is a constant. Given that $t_{1}=1.5$,
a find expressions for t_{2} and t_{3} in terms of k.
Given also that $t_{3}=12$,
b find the possible values of k.

