Relating Rates of Change

Eg. Determine the rate of change of the area A of a circle when the radius $r=3 \mathrm{~cm}$, given that the radius is changing at a rate of $5 \mathrm{~cm} \mathrm{~s}{ }^{-1}$

Firstly, how would we represent...

"the rate of change of the area A "
Fro Tip: Whenever you see the word 'rate', think / $d t$
"the rate of change of the radius r is 5 "
"the area A of a circle"

Then by Chain Rule:

...Then fill in the gaps with whatever variable you didn't use.

A differential equation is an equation that can be used to calculate a rate of change over time (essentially, what you have just been doing!)

Textbook. In the decay of radioactive particles, the rate at which particles decay is proportional to the number of particles remaining. Write down a differential equation for the rate of change of the number of particles.

Textbook. Newton's law of cooling states that the rate of loss of temperature of a body is proportional to the excess temperature of the body compared to its surroundings. Write an equation that expresses this law.

Textbook. The head of a snowman of radius $\boldsymbol{R} \mathbf{c m}$ loses volume by evaporation at a rate proportional to its surface area. Assuming that the head is spherical, that the volume of a sphere is given by $V=\frac{4}{3} \pi R^{3} \mathrm{~cm}^{3}$ and that the surface area is $A=4 \pi R^{2} \boldsymbol{c m}^{2}$, write down a differential equation for the rate of change of radius of the snowman's head.

Further Example

Edexcel C4 June 2008 Q3

Figure 2 shows a right circular cylindrical metal rod which is expanding as it is heated. After t seconds the radius of the rod is $x \mathrm{~cm}$ and the length of the rod is $5 x \mathrm{~cm}$.
The cross-sectional area of the rod is increasing at the constant rate of $0.032 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$.
(a) Find $\frac{\mathrm{d} x}{\mathrm{~d} t}$ when the radius of the rod is 2 cm , giving your answer to 3 significant figures.
(b) Find the rate of increase of the volume of the rod when $x=2$.

Test Your Understanding

June 2012 Q2

Figure 1
Figure 1 shows a metal cube which is expanding uniformly as it is heated.
At time t seconds, the length of each edge of the cube is $x \mathrm{~cm}$, and the volume of the cube is $V \mathrm{~cm}^{3}$.
(a) Show that $\frac{\mathrm{d} V}{\mathrm{~d} x}=3 x^{2}$.

Given that the volume, $V \mathrm{~cm}^{3}$, increases at a constant rate of $0.048 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$,
(b) find $\frac{\mathrm{d} x}{\mathrm{~d} t}$ when $x=8$,
(2)
(c) find the rate of increase of the total surface area of the cube, in $\mathrm{cm}^{2} \mathrm{~s}^{-1}$, when $x=8$.

