Using the second derivative

Reminder: a point of inflection is where the concavity of a curve changes, i.e. concave to convex or vice versa, or informally, 'swerving one way to swerving the other'.

$$
\text { Point of inflection when } f^{\prime \prime}(x)=0
$$

Examples

1. Find the interval on which the function $f(x)=x^{3}+4 x+3$ is concave.
2. Show that $f(x)=e^{2 x}+x^{2}$ is convex for all real values of x.
3. The curve C has equation $y=x^{3}-2 x^{2}-4 x+5$. Find the coordinates of the point of inflection.
