Implicit Differentiation

You're used to differentiating expressions where y is the subject, e.g. $y = x^2 + 3x$. The relationship between x and y is 'explicit' in the sense we can directly calculate y from x.

But what about implicit relations, e.g:

 $x^{2} + y^{2} = 8x$ or $\cos(x + y) = \sin y$

To differentiate implicitly you only need to know 2 things:

- · Differentiate each side of the equation (using chain rule if necessary).
- Remember that y differentiated with respect to x is, by definition, $\frac{dy}{dx}$

In general, when differentiating a function of y, but with respect to x, slap a $\frac{dy}{dx}$ on the end. i.e.

$$\frac{d}{dx}(f(y)) = f'(y)\frac{dy}{dx}$$

Examples

 $\frac{d}{dx}(y^2)$ $\frac{d}{dx}(\sin y)$ $\frac{d}{dx}(e^{y})$ $\frac{d}{dx}(xy)$ $\frac{d}{dx}(e^{x^2y})$ $\frac{d}{dx}(\tan(x+y))$ $\frac{d}{dx}(x^2 + \cos y)$

Meatier Examples

[Textbook] Find $\frac{dy}{dx}$ in terms of x and y where $x^3 + x + y^3 + 3y = 6$

[Textbook] Find the value of $\frac{dy}{dx}$ at the point (1, 1), where $e^{2x} \ln y = x + y - 2$

Test Your Understanding

C4 Jan 2008 Q5

A curve is described by the equation

 $x^3 - 4y^2 = 12xy.$

(a) Find the coordinates of the two points on the curve where x = -8. (3)

(b) Find the gradient of the curve at each of these points. (6)

<u>C4 June 2014(R) Q3</u>

$$x^{2} + y^{2} + 10x + 2y - 4xy = 10$$
(a) Find $\frac{dy}{dx}$ in terms of x and y, fully simplifying your answer. (5)
(b) Find the values of y for which $\frac{dy}{dx} = 0$. (5)

Exercise 9H Page 255-256