Implicit Differentiation

You're used to differentiating expressions where y is the subject, e.g. $y=x^{2}+3 x$. The relationship between x and y is 'explicit' in the sense we can directly calculate y from x.

But what about implicit relations, e.g:

$$
x^{2}+y^{2}=8 x \quad \text { or } \quad \cos (x+y)=\sin y
$$

To differentiate implicitly you only need to know 2 things:

- Differentiate each side of the equation (using chain rule if necessary).
- Remember that y differentiated with respect to x is, by definition, $\frac{d y}{d x}$

In general, when differentiating a function of y, but with respect to x, slap a $\frac{d y}{d x}$ on the end. i.e.

$$
\frac{d}{d x}(f(y))=f^{\prime}(y) \frac{d y}{d x}
$$

Examples

$\frac{d}{d x}\left(y^{2}\right)$
$\frac{d}{d x}(\sin y)$
$\frac{d}{d x}\left(e^{y}\right)$
$\frac{d}{d x}(x y)$
$\frac{d}{d x}\left(e^{x^{2} y}\right)$
$\frac{d}{d x}(\tan (x+y))$
$\frac{d}{d x}\left(x^{2}+\cos y\right)$

Meatier Examples

[Textbook] Find $\frac{d y}{d x}$ in terms of x and y where $x^{3}+x+y^{3}+3 y=6$
[Textbook] Find the value of $\frac{d y}{d x}$ at the point (1, 1), where $e^{2 x} \ln y=x+y-2$

Test Your Understanding

C4 Jan 2008 Q5

A curve is described by the equation

$$
x^{3}-4 y^{2}=12 x y .
$$

(a) Find the coordinates of the two points on the curve where $x=-8$. (3)
(b) Find the gradient of the curve at each of these points.

C4 June 2014(R) Q3

$$
x^{2}+y^{2}+10 x+2 y-4 x y=10
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y, fully simplifying your answer. (5)
(b) Find the values of y for which $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.

