Parametric Differentiation

Recall from the previous chapter that parametric equations are when we define each of x and y (and possibly z) in terms of some separate parameter, e.g. t.

If x and y are given as functions of a parameter t, then

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$

1. Find the gradient at the point P where t = 2, on the curve given parametrically by

$$x = t^3 + t$$
, $y = t^2 + 1$, $t \in \mathbb{R}$

2. Find the equation of the normal at the point *P* where $\theta = \frac{\pi}{6}$, to the curve with parametric equations $x = 3 \sin \theta$, $y = 5 \cos \theta$

A Level Mathematics

Test Your Understanding