Parametric Differentiation

Recall from the previous chapter that parametric equations are when we define each of x and y (and possibly z) in terms of some separate parameter, e.g. t.

If x and y are given as functions of a parameter t, then

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}
$$

1. Find the gradient at the point P where $t=2$, on the curve given parametrically by

$$
x=t^{3}+t, \quad y=\mathrm{t}^{2}+1, \mathrm{t} \in \mathbb{R}
$$

2. Find the equation of the normal at the point P where $\theta=\frac{\pi}{6}$, to the curve with parametric equations

$$
x=3 \sin \theta, \quad y=5 \cos \theta
$$

A Level Mathematics

Test Your Understanding

C4 June 2012 Q6

Figure 2
Figure 2 shows a sketch of the curve C with parametric equations

$$
x=\sqrt{3} \sin 2 t, \quad y=4 \cos ^{2} t, \quad 0 \leq t \leq \pi .
$$

(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=k \sqrt{ } 3 \tan 2 t$, where k is a constant to be determined.
(b) Find an equation of the tangent to C at the point where $t=\frac{\pi}{3}$.

Give your answer in the form $y=a x+b$, where a and b are constants.

A Level Mathematics

