Differentiating Vectors

We use calculus with 2-d (and 3-d) vectors by differentiating and integrating each function of time separately:

If $\boldsymbol{r}=x \boldsymbol{i}+y \boldsymbol{j}$, then

Example

A particle P of mass 0.8 kg is acted on by a single force $\mathbf{F} \mathrm{N}$. Relative to a fixed origin O, the position vector of P at time t seconds is \boldsymbol{r} metres, where

$$
\boldsymbol{r}=2 t^{3} \boldsymbol{i}+50 t^{-\frac{1}{2}} \boldsymbol{j}, \quad t \geq 0
$$

Find:
a) the speed of P when $t=4$
b) the acceleration of P as a vector when $t=2$
c) \mathbf{F} when $t=2$.

