Vector Methods with Projectiles

Previously we considered the initial speed of the projectile and the angle of projection. But we could also use a velocity vector to represent the initial projection (vectors have both direction and magnitude) and subsequent motion.

Example

A ball is projected from the origin with velocity $(12 \boldsymbol{i}+24 \boldsymbol{j}) \mathrm{ms}^{-1}$ where \boldsymbol{i} and \boldsymbol{j} are horizontal and vertical unit vectors respectively. The particle moves freely under gravity. Find:
a) The position vector of the ball after 3s
b) The speed of the ball after 3 s
c) The ball strikes the ground at point B. Determine the distance $O B$

Example

A particle P is projected with velocity $(4 p \boldsymbol{i}+5 p \boldsymbol{j}) \mathrm{ms}^{-1}$ from a point O on a horizontal plane, where \boldsymbol{i} and \boldsymbol{j} are horizontal and vertical unit vectors respectively.
The particle P strikes the plane at the point A, which is 800 m from O.
a) Show that $p=14$.
b) Find the time of flight from O to A.

The particle P passes through a point B with speed $60 \mathrm{~m} \mathrm{~s}^{-1}$.
c) Find the height of B above the horizontal plane.
[In this question, the unit vectors \mathbf{i} and \mathbf{j} are horizontal and vertical respectively.]

Figure 3
The point O is a fixed point on a horizontal plane. A ball is projected from O with velocity $(6 \mathbf{i}+12 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$, and passes through the point A at time t seconds after projection. The point B is on the horizontal plane vertically below A, as shown in Figure 3. It is given that $O B=2 A B$.

Find
(a) the value of t,
(b) the speed, $V \mathrm{~m} \mathrm{~s}^{-1}$, of the ball at the instant when it passes through A.

At another point C on the path the speed of the ball is also $V \mathrm{~m} \mathrm{~s}^{-1}$.
(c) Find the time taken for the ball to travel from O to C.

