8B Finding Cartesian Equations with Trig

1. A curve has parametric equations:

$$
x=\sin t+2, y=\cos t-3, t \in \mathbb{R}
$$

a) Show that a Cartesian equation of the curve is given by

$$
(x-2)^{2}+(y+3)^{2}=1
$$

b) Hence, sketch the curve...
2. A curve has parametric equations:

$$
x=\sin t, y=\sin 2 t,-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}
$$

a) Find a Cartesian equation of the curve in the form $y=f(x),-k \leq x \leq k$, stating the value of the constant k.
b) Write down the range of $f(x)$
3. A curve has parametric equations:

$$
\begin{gathered}
x=\cot (t)+2, \quad y=\operatorname{cosec}^{2} t-2 \\
0<t<\pi
\end{gathered}
$$

a) Find the equation of the curve in the form $y=f(x)$ and state the domain of x for which the curve is defined
b) Hence, sketch the curve

