...when you have trig identities

When we have trig functions we have to use identities to find the Cartesian equation. Generally we use $\sin^2 t + \cos^2 t \equiv 1$ or $1 + \tan^2 t \equiv \sec^2 t$

[Textbook] A curve has the parametric sequences $x = \sin t + 2$, $y = \cos t - 3$, $t \in \mathbb{R}$.

- a) Find a Cartesian equation for the curve.
- b) Hence sketch the curve.

[Textbook] A curve is defined by the parametric equations

$$x = \sin t$$
, $y = \sin 2t$, $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$

- a) Find a Cartesian equation of the curve in the form y = f(x), $-k \le x \le k$, stating the value of the constant k.
- b) Write down the range of f(x).

Test Your Understanding

C4 June 2013

which double angle formula would be best here?

4. A curve C has parametric equations

$$x = 2\sin t, \qquad y = 1 - \cos 2t, \qquad -\frac{\pi}{2} \le t \le$$

(b) Find a cartesian equation for C in the form

$$y = f(x),$$
 $-k \le x \le k,$

stating the value of the constant k.

[Textbook] A curve ${\it C}$ has parametric equations

$$x = \cot t + 2$$
, $y = \csc^2 t - 2$, $0 < t < \pi$

- a) Find the equation of the curve in the form y = f(x) and state the domain of x for which the curve is defined.
- b) Hence, sketch the curve.

Exercise 8B Page 204