8A Movement on a Plane

1. A particle starts from the point with position vector $(3 \boldsymbol{i}+7 \boldsymbol{j}) m$ and moves with constant velocity $(2 \boldsymbol{i}-\boldsymbol{j}) m s^{-1}$.
a) Find the position vector of the particle after 4 seconds
b) Find the time at which the particle is due east of the origin
2. A particle P has velocity $(-3 \boldsymbol{i}+\boldsymbol{j}) \mathrm{ms}^{-1}$ at time $t=0$. The particle moves with constant acceleration $a=(2 \boldsymbol{i}+3 \boldsymbol{j}) \mathrm{ms}^{-2}$. Find the speed of the particle and the bearing on which it is travelling at time 3 seconds.
3. An ice skater is skating on a large flat ice rink. At time $t=0$ the skater is at a fixed point O and is skating with velocity $(2.4 \boldsymbol{i}-0.6 \boldsymbol{j}) \mathrm{ms}^{-1}$.

At time $t=20$ the skater is travelling with velocity $(-5.6 \boldsymbol{i}+3.4 \boldsymbol{j}) \mathrm{ms}^{-1}$.
Relative to O, the skater has position vector \boldsymbol{s} at time t seconds.
Modelling the skater as having constant acceleration, find:
a) The acceleration of the ice skater
b) An expression for \boldsymbol{s} in terms of \boldsymbol{t}
c) Find the time at which the skater is directly north-east of O
d) A second skater travels such that she has position vector $\boldsymbol{r}=(1.1 t-6) \boldsymbol{j} m$ relative to the same point O at time t.

