P2 Chapter 8 Parametric Equations

Chapter Overview

This chapter is very similar to the trigonometry chapters in Year 1. The only difference is that new trig functions: sec, cosec and cot, are introduced.

1:: Converting from parametric to Cartesian form.

If $x = 2 \cos t + 1$ and $y = 3 \sin t$, find a Cartesian equations connecting x and y.

2:: Sketching parametric curves.

Sketch the curve with parametric equations x = 2t and $y = \frac{5}{t}$.

3:: Finding points of intersection.

Curve C_1 has the parametric equations $x=t^2$ and y=4t. The curve C_2 has the Cartesian equation x+y+4=0. The two curves intersect at A. Find the coordinates of A.

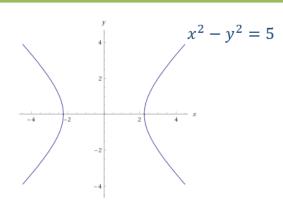
4:: Modelling

A plane's position at time t seconds after take-off can be modelled with the parametric equations:

 $x = (v \cos \theta)t$ m, $y = (v \sin \theta)t$ m, t > 0

T	What students need to learn:			
Topics	Content		Guidance	
Coordinate geometry in the (x, y) plane continued	3.3	Understand and use the parametric equations of curves and conversion between Cartesian and parametric forms.	For example: $x = 3\cos t$, $y = 3\sin t$ describes a circle centre O radius 3 $x = 2 + 5\cos t$, $y = -4 + 5\sin t$ describes a circle centre $(2, -4)$ with radius 5 $x = 5t$, $y = \frac{5}{t}$ 5describes the curve $xy = 25$ (or $y = \frac{25}{x}$) $x = 5t$, $y = 3t^2$ describes the quadratic curve $25y = 3x^2$ and other familiar curves covered in the specification. Students should pay particular attention to the domain of the parameter t , as a specific section of a curve may be described.	
	3.4	Use parametric equations in modelling in a variety of contexts.	A shape may be modelled using parametric equations or students may be asked to find parametric equations for a motion. For example, an object moves with constant velocity from $(1, 8)$ at $t = 0$ to $(6, 20)$ at $t = 5$. This may also be tested in Paper 3, section 7 (kinematics).	

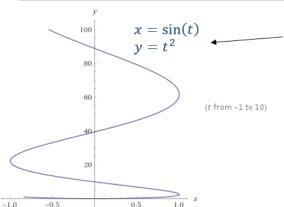
What are they and what is the point?



Typically, with two variables x and y, we can relate the two by a single equation involving just x and y.

This is known as a **Cartesian equation**.

The line shows all points (x, y) which satisfy the Cartesian equation.



However, in Mechanics for example, we might want each of the x and y values to be some function of time t, as per this example.

This would allow us to express the position of a particle at time t as the vector:

$$\binom{\sin t}{t^2}$$

These are known as parametric equations, because each of x and y are defined in terms of some other variable, known as the parameter (in this case t).

Converting parametric to Cartesian

	x = 2t.	$v = t^2$.	-3 < t < 3
hat is the domain	of the function	on?	
			as y = f(x) then the domain
\mathscr{F} If $x=p(t)$ and	y = q(t) can		as $y=f(x)$, then the domain
\mathscr{F} If $x=p(t)$ and	y = q(t) can		as $y=f(x)$, then the domain
\mathscr{F} If $x=p(t)$ and	y = q(t) can		as $y=f(x)$, then the domain
\mathscr{F} If $x=p(t)$ and	y = q(t) can		as $y=f(x)$, then the domain
If $x=p(t)$ and f is the range of	y=q(t) can p	n be written :	as $y=f(x)$, then the domain
If $x=p(t)$ and if f is the range of	y=q(t) can p	n be written :	as $y=f(x)$, then the domain
hat is the domain P If $x = p(t)$ and of f is the range of P and the range f	y=q(t) can p	n be written :	as $y=f(x)$, then the domain

Further Example

[Textbook] A curve has the parameter equations

$$x = \ln(t+3)$$
, $y = \frac{1}{t+5}$, $t > -2$

- a) Find a Cartesian equation of the curve of the form y = f(x), x > k, where k is a constant to be found.
- b) Write down the range of f(x).

A common strategy for domain/range questions is to consider what happens are the boundary value (in this case -2), then since t>-2, consider what happens as t increases.

Test Your Understanding

Edexcel C4 Jan 2008 Q7

The curve C has parametric equations

$$x = \ln (t+2), \quad y = \frac{1}{(t+1)}, \quad t > -1.$$

(c) Find a cartesian equation of the curve C, in the form y = f(x). (4)

Edexcel C4 Jan 2011

6. The curve C has parametric equations

$$x = \ln t$$
, $y = t^2 - 2$, $t > 0$.

(b) a cartesian equation of C.

(3)