7D Hinges

1. A Plank $A B$ of mass M and length $2 a$, rests with its end A against a rough vertical wall. The plank is held in a horizontal position by a rope. One end of the rope is attached to the plank and the other end is attached to the wall at the point C, which is vertically above A.

A small block of mass $3 M$ is placed on the plank at the point P, where $A P=x$. The plank is in equilibrium in a vertical plane which is perpendicular to the wall. The angle between the rope and the plank is α, where $\tan (\alpha)=\frac{3}{4}$, as shown.

The plank is modelled as a uniform rod, the block is modelled at a particle and the rope is modelled as a light inextensible string.
a) Using the model, show that the tension in the rope is

$$
\frac{5 M g(3 x+a)}{6 a}
$$

The magnitude of the horizontal component of the force exerted on the plane $A B$ by the wall is 2 Mg .
b) Find x in terms of a

The forces exerted on the plank by the wall acts in a direction which makes angle β with the horizontal.
c) Find the value of $\tan \beta$

The rope will break if the tension in it exceeds 5 Mg .
d) Explain how this will restrict the possible values of P

