# Chapter 7 - Mechanics

# **Applications of Forces**

## **Chapter Overview**

- 1. Static Particles
- 2. Modelling with Statics
- 3. Friction and Static Particles
- 4. Static Rigid Bodies
- 5. Dynamics and Inclined Planes

## 6. Connected Particles

| Topics                           | What students need to learn: |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|----------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                  | Content                      |                                                                                                                                                                                                                                                                                               | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 8<br>Forces and<br>Newton's laws | 8.1                          | Understand the concept<br>of a force; understand<br>and use Newton's first<br>law.                                                                                                                                                                                                            | Normal reaction, tension, thrust or compression, resistance.                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                  | 8.2                          | Understand and use<br>Newton's second law for<br>motion in a straight line<br>(restricted to forces in<br>two perpendicular<br>directions or simple cases<br>of forces given as 2-D<br>vectors); extend to<br>situations where forces need<br>to be resolved (restricted to<br>2 dimensions). | Problems will involve motion in a<br>straight line with constant<br>acceleration in scalar form, where the<br>forces act either parallel or<br>perpendicular to the motion.<br>Extend to problems where forces need to<br>be resolved, e.g. a particle moving on an<br>inclined plane.<br>Problems may involve motion in a<br>straight line with constant<br>acceleration in vector form, where the<br>forces are given in i – j form or as<br>column vectors. |  |

|                                               | 8.3 | Understand and use<br>weight and motion in a<br>straight line under<br>gravity; gravitational<br>acceleration, g, and its<br>value in S.I. units to<br>varying degrees of<br>accuracy.                                                                                                                  | The default value of g will be 9.8 m s <sup>-2</sup><br>but some questions may specify<br>another value, e.g. $g = 10 \text{ m s}^{-2}$<br>The inverse square law for gravitation<br>is not required and g may be assumed<br>to be constant, but students should be<br>aware that g is not a universal<br>constant but depends on location. |
|-----------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | 8.4 | Understand and use<br>Newton's third law;<br>equilibrium of forces on a<br>particle and motion in a<br>straight line; application<br>to problems involving<br>smooth pulleys and<br>connected particles;<br>resolving forces in<br>2 dimensions; equilibrium of<br>a particle under coplanar<br>forces. | Connected particle problems could<br>include problems with particles in<br>contact e.g. lift problems.<br>Problems may be set where forces need to<br>be resolved, e.g. at least one of the<br>particles is moving on an inclined plane.                                                                                                    |
|                                               | 8.5 | Understand and use addition<br>of forces; resultant forces;<br>dynamics for motion in a<br>plane.                                                                                                                                                                                                       | Students may be required to resolve a<br>vector into two components or use a<br>vector diagram, e.g. problems involving<br>two or more forces, given in magnitude-<br>direction form.                                                                                                                                                       |
| 8<br>Forces and<br>Newton's laws<br>continued | 8.6 | Understand and use the $F \leq \mu R$ model for friction; coefficient of friction; motion of a body on a rough surface; limiting friction and statics.                                                                                                                                                  | An understanding of $F = \mu R$ when a particle is moving.<br>An understanding of $F \le \mu R$ in a situation of equilibrium.                                                                                                                                                                                                              |
| 9<br>Moments                                  | 9.1 | Understand and use<br>moments in simple static<br>contexts.                                                                                                                                                                                                                                             | Equilibrium of rigid bodies.<br>Problems involving parallel and non-<br>parallel coplanar forces, e.g. ladder<br>problems.                                                                                                                                                                                                                  |

In this chapter, we will bring together everything that we have learned about forces: friction, resolving forces into components, Newton's 2nd law, inclined planes and connected particles, for different, common types of problems.

#### 1. Static Particles

If a particle is in equilibrium, the resultant of all forces is 0 and the particle remains at rest.

- Always draw a diagram
  Resolve the forces, horizontal and vertical, or parallel and perpendicular if on an inclined plane
  In each direction, sum of components = 0
- Solve the resulting equations to find unknown forces

For particles in equilibrium, you can also use a triangle of forces.

#### **Example**

The diagram shows a particle in equilibrium under the action of four forces as shown in the diagram below. The particle rests on an inclined plane which is set at an angle of 30° to the horizontal.



Find the magnitude of force *F* and the size of the angle,  $\alpha$ , in degrees giving both answers to two significant figures.

#### Test Your Understanding

The diagram shows a particle in equilibrium on an inclined plane under the forces shown. Find the magnitude of the force Q and the size of the angle  $\beta$ .



Hint: Redraw the Q N force

Exercise 7A Page 130