Projection motion Formulae

You must be able to derive general formulae related to the motion of a particle which is projected from a point on a horizontal plane and moves freely under gravity.

Deriving the Time of Flight (T) and the Range (R)

A particle is projected from a point on a horizontal plane with an initial velocity U at an angle α above the horizontal and moves freely under gravity until it hits the plane at point B.
Given that that acceleration due to gravity is g, find expressions for:
(a) the time of flight, T
(b) the range, R, on the horizontal plane.

Deriving the Equation of the Trajectory

When a particle is projected from a point O , on a horizontal plane, the equation of the trajectory may be obtained by taking x and y axes through the point of projection, O , as shown on the diagram.

A particle is projected from a point with speed U at an angle of elevation α and moves freely under gravity. When the particle has moved a horizontal distance x, its height above the point of projection is y.
(a) Show that $y=x \tan \alpha-\frac{g x^{2}}{2 u^{2}}\left(1+\tan ^{2} \alpha\right)$

A particle is projected from a point O on a horizontal plane, with speed $28 \mathrm{~ms}^{-1}$ at an angle of elevation α. The particle passes through a point B, which is at a horizontal distance of 32 m from O and at a height of 8 m above the plane.
(b) Find the two possible values of α, giving your answers to the nearest degree.

Exam Note: You may be asked to derive these. But don't attempt to memorise them or actually use them to solve exam problems - instead use the techniques used earlier in the chapter.

For a particle projected with initial velocity U at angle α above horizontal and moving freely under gravity:

- Time of flight $=\frac{2 U \sin \alpha}{g}$
- Time to reach greatest height $=\frac{U \sin \alpha}{g}$
- Range on horizontal plane $=\frac{U^{2} \sin 2 \alpha}{g}$
- Equation of trajectory: $y=x \tan \alpha-\frac{g x^{2}}{2 U^{2}}\left(1+\tan ^{2} \alpha\right)$ where y is vertical height of particle and x horizontal distance.

