Chapter 6 - Mechanics

Projectiles

Chapter Overview

- 1. Horizontal Projection
- 2. Horizontal and Vertical Components
- 3. Projection at any Angle
- 4. Projectile Motion Formulae

Topics	What	What students need to learn:		
	Conte	ent	Guidance	
	7.3	Understand, use and derive the formulae for constant acceleration for motion in a straight line. Extend to 2 dimensions using vectors.	Derivation may use knowledge of sections 7.2 and/or 7.4	
			Understand and use suvat formulae for constant acceleration in 2-D,	
			e.g. $\mathbf{v} = \mathbf{u} + \mathbf{a}t$, $\mathbf{r} = \mathbf{u}t + \frac{1}{2}at^2$ with vectors	
			given in $\mathbf{i} - \mathbf{j}$ or column vector form.	
			Use vectors to solve problems.	
	7.4	Use calculus in kinematics for motion in a straight line:	The level of calculus required will be consistent with that in Sections 7 and 8 in Paper 1 and Sections 6 and 7 in Paper 2.	
		$v = \frac{dr}{dt}, a = \frac{dv}{dt} = \frac{d^2r}{dt^2}$ $r = \int v dt, v = \int a dt$		
		Extend to 2 dimensions using vectors.	Differentiation and integration of a vector with respect to time. e.g.	
			Given $\mathbf{r} = t^2 \mathbf{i} + t^2 \mathbf{j}$, find $\dot{\mathbf{r}}$ and $\ddot{\mathbf{r}}$ at a given time.	
	7.5	Model motion under gravity in a vertical plane using vectors; projectiles.	Derivation of formulae for time of flight, range and greatest height and the derivation of the equation of the path of a projectile may be required.	

A particle moving in a vertical plane under gravity is sometimes called a projectile. You can use projectile motion to model the flight of e.g. a golf ball.

1. Horizontal Motion

The horizontal motion of a projectile is modelled as having constant velocity (a=0), so s=vt. Use u_x and v_x to denote horizontal velocity components.

The vertical motion of a projectile is modelled as having constant acceleration due to gravity (a=g). Use SUVAT - careful with directions! Use u_y and v_y to denote vertical velocity components.

Example

A ball is thrown horizontally with speed 20ms⁻¹, from the top of a building, which is 30m high. Find:

- a) The time the ball takes to reach the ground.
- b) The distance between the bottom of the building and the point where the ball hits the ground.

Example

A particle is projected horizontally with a velocity of 39.2ms⁻¹. Find the horizontal and vertical components of the velocity of the particle 3s after projection. Find also the speed and direction of the motion of the particle.