Example (Inclined Plane)

A particle is held at rest on a rough plane, which is inclined to the horizontal at an angle α, where $\tan \alpha=0.75$. The coefficient of friction between the particle and the plane is 0.5 . The particle is released and slides down the plane. Find:
a) The acceleration of the particle
b) The distance it slides in the first two seconds

Test Your Understanding

1. A particle P of mass 3 kg is held at rest in equilibrium on a rough plane that is inclined to the horizontal at an angle of 30° by a constant force of magnitude $x \mathrm{~N}$ acting up the plane. The coefficient of friction between P and the plane is 0.5 . Find the magnitude of x if:
a) The particle is on the point of slipping up the plane
b) The particle is on the point of slipping down the plane
2. A particle P of mass 3 kg is held at rest in equilibrium on a rough plane that is inclined to the horizontal at an angle of 30° by a constant force of magnitude 30 N . The direction of the force is inclined to the plane at an angle of 40°, and its line of action lies in the vertical plane containing P and a line of greatest slope of the plane.
The coefficient of friction between P and the plane is μ.

Given that P is on the point of sliding up the plane, find the value of μ.

