4C Uniform Rods

1. The diagram shows a uniform rod of length 3 m and weight 20 N resting horizontally on supports at A and C, where $A C=2 \mathrm{~m}$.
Calculate the magnitude of the normal reaction at both of the supports

2. A uniform beam, $A B$, of mass 40 kg and length 5 m , rests horizontally on supports at C and D where $\mathrm{AC}=\mathrm{DB}=1 \mathrm{~m}$.

When a man of mass 80 kg stands on the beam at E , the magnitude of the reaction at D is double the reaction at C .

By modelling the beam as a rod and the man as a particle, find the distance AE
3. A uniform $\operatorname{rod} P Q$ is hinged at the point P, and is held in equilibrium at an angle of 50° to the horizontal by a force of magnitude F acting perpendicular to the rod at Q. Given that the rod has a length of 3 m and a mass of 8 kg , find the value of \boldsymbol{F}.

P 50°

