Recurrence Relations

Example

6. A sequence $x_{1}, x_{2}, x_{3}, \ldots$ is defined by

$$
\begin{aligned}
& x_{1}=1 \\
& x_{n+1}=\left(x_{n}\right)^{2}-k x_{n}, \quad n \geq 1
\end{aligned}
$$

where k is a constant.
(a) Find an expression for x_{2} in terms of k.
(1)
(b) Show that $x_{3}=1-3 k+2 k^{2}$.
(2)

Given also that $x_{3}=1$,
(c) calculate the value of k.
(d) Hence find the value of $\sum_{n=1}^{100} x_{n}$.

Test Your Understanding

4. A sequence $x_{12}, x_{2}, x_{3}, \ldots$ is defined by

$$
\begin{aligned}
& x_{1}=1, \\
& x_{n+1}=a x_{n}+5, \quad n \geq 1,
\end{aligned}
$$

where a is a constant
(a) Write down an expression for x_{2} in terms of a.
(b) Show that $x_{3}=a^{2}+5 a+5$.

Given that $x_{3}=41$
(c) find the possible values of a.

Combined Sequences

Sequences (or series) can be generated from a combination of both an arithmetic and a geometric sequence.

Example

4. (i) Show that $\sum_{r=1}^{16}\left(3+5 r+2^{r}\right)=131798$
(ii) A sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{n+1}=\frac{1}{u_{n}}, \quad u_{1}=\frac{2}{3}
$$

Find the exact value of $\sum_{r=1}^{100} u_{r}$

Extension

1. [AEA 2011 Q3] A sequence $\left\{u_{n}\right\}$ is given by

$$
u_{1}=k u_{2 n}=u_{2 n-1} \times p, \quad n \geq 1 u_{2 n+1}=u_{2 n} \times q \quad n \geq 1
$$

(a) Write down the first 6 terms in the sequence.
(b) Show that $\sum_{r=1}^{2 n} u_{r}=\frac{k(1+p)\left(1-(p q)^{n}\right)}{1-p q}$
$[x]$ means the integer part of x, for example $[2.73]=2,[4]=4$.
Find $\sum_{r=1}^{\infty} 6 \times\left(\frac{4}{3}\right)^{\left[\frac{r}{2}\right]} \times\left(\frac{3}{5}\right)^{\left[\frac{r-1}{2}\right]}$
2. [MAT 2014 1H] The function $F(n)$ is defined for all positive integers as follows: $F(1)=0$ and for all $n \geq 2$,
$F(n)=F(n-1)+2 \quad$ if 2 divides n but 3 does not divide,
$F(n)=F(n-1)+3 \quad$ if 3 divides n but 2 does not divide n,
$F(n)=F(n-1)+4 \quad$ if 2 and 3 both divide n
$F(n)=F(n-1) \quad$ if neither 2 nor 3 divides n.
Then the value of $F(6000)$ equals what?
3. [MAT 2016 1G] The sequence $\left(x_{n}\right)$, where $n \geq 0$, is defined by $x_{0}=1$ and $x_{n}=\sum_{k=0}^{n-1}\left(x_{k}\right)$ for $n \geq 1$

Determine the value of the sum $\sum_{k=0}^{\infty} \frac{1}{x_{k}}$

