Identify the common ratio r :

1 1, 2, 4, 8, 16, 32, ...
$227,18,12,8, \ldots$
3 10, $5,2.5,1.25, \ldots$
4 $5,-5,5,-5,5,-5, \ldots$
$5 x,-2 x^{2}, 4 x^{3}$
$61, p, p^{2}, p^{3}, \ldots$
7 $4,-1,0.25,-0.0625, \ldots$

Examples

1. Determine the $10^{\text {th }}$ and $n^{\text {th }}$ terms of the following:
a) $3,6,12,24, \ldots$
b) $40,-20,10,-5, \ldots$
2. The second term of a geometric sequence is 4 and the $4^{\text {th }}$ term is 8 . The common ratio is positive. Find the exact values of:
a) The common ratio.
b) The first term.
c) The $10^{\text {th }}$ term.
3. The numbers $3, x$ and $x+6$ form the first three terms of a positive geometric sequence. Find:
a) The value of x.
b) The $10^{\text {th }}$ term in the sequence.

Inequalities Example

What is the first term in the geometric progression $3,6,12,24, \ldots$ to exceed 1 million?

Test Your Understanding

1. All the terms in a geometric sequence are positive.

The third term of the sequence is 20 and the fifth term 80 . What is the $20^{\text {th }}$ term?
2. The second, third and fourth term of a geometric sequence are the following:

$$
x, \quad x+6,5 x-6
$$

a) Determine the possible values of x.
b) Given the common ratio is positive, find the common ratio.
c) Hence determine the possible values for the first term of the sequence.

