Arithmetic Series

Proof of summation (required for exam):

Examples

1. Find the sum of the first 30 terms of the following arithmetic sequences

$$
\begin{aligned}
& 2+5+8+11+14 \ldots \\
& 100+98+96+\cdots \\
& p+2 p+3 p+\cdots
\end{aligned}
$$

2. Find the greatest number of terms for the sum of $4+9+14+\cdots$ to exceed 2000

Test Your Understanding

9. A company offers two salary schemes for a 10-year period, Year 1 to Year 10 inclusive.

Scheme 1: Salary in Year 1 is $£ P$.
Salary increases by $£(2 T)$ each year, forming an arithmetic sequence.
Scheme 2: Salary in Year 1 is $£(P+1800)$.
Salary increases by $£ T$ each year, forming an arithmetic sequence.
(a) Show that the total earned under Salary Scheme 1 for the 10 -year period is

$$
\begin{equation*}
£(10 P+90 T) . \tag{2}
\end{equation*}
$$

For the 10 -year period, the total earned is the same for both salary schemes.
(b) Find the value of T.

For this value of T, the salary in Year 10 under Salary Scheme 2 is $£ 29850$.
(c) Find the value of P.

Extension

[MAT 2007 1J]
The inequality

$$
(n+1)+\left(n^{4}+2\right)+\left(n^{9}+3\right)+\cdots \quad+\left(n^{10000}+100\right)
$$

$$
>k
$$

Is true for all $n \geq 1$. It follows that
A) $k<1300$
B) $k^{2}<101$
C) $k \geq 101^{10000}$
D) $k<5150$

[AEA 2010 Q2]

The sum of the first p terms of an arithmetic series is q and the sum of the first q terms of the same arithmetic series is p, where p and q are positive integers and $p \neq q$. Giving simplified answers in terms of p and q, find
a) The common difference of the terms in this series,
b) The first term of the series,
c) The sum of the first $(p+q)$ terms of the series.

[MAT 2008 1I]

The function $S(n)$ is defined for positive integers n by

$$
S(n)=\text { sum of digits of } n
$$

For example, $S(723)=7+2+3=12$.
The sum
$S(1)+S(2)+S(3)+\cdots+S(99)$
equals what?

