Negative Areas

Sketch the curve $y=x(x-1)(x-2)$.

Now calculate $\int_{0}^{2} x(x-1)(x-2) d x$.

Why is this result surprising?

Integration $\int f(x) d x$ is just the sum of areas of infinitely thin rectangles, where the current y value (i.e. $f(x)$) is each height, and the widths are $d x$.
i.e. The area of each is $f(x) \times d x$

The problem is, when $f(x)$ is negative, then $f(x) \times d x$ is negative, i.e. a negative area!
The result is that the 'positive area' from 0 to 1 is cancelled out by the 'negative area' from 1 to 2 , giving an overall 'area' of 0 .

So how do we resolve this?

This explains the $d x$ in the $\int f(x) d x$, which effectively means "the sum of the areas of strips, each of area $f(x) \times d x$. So the $d x$ is not just part of the \int notation, it's behaving as a physical quantity! (i.e. length

Example

Find the total area bound between the curve $y=x(x-1)(x-2)$ and the x-axis.

Test Your Understanding

Figure 3 shows a sketch of part of the curve C with equation

$$
y=x(x+4)(x-2) .
$$

The curve C crosses the x-axis at the origin O and at the points A and B
(a) Write down the x-coordinates of the points A and B.

The finite region, shown shaded in Figure 3, is bounded by the curve C and the x-axis.
(b) Use integration to find the total area of the finite region shown shaded in Figure 3.

Figure 3

Extension

[MAT 2010 11] For a positive number a, let

$$
I(a)=\int_{0}^{a}\left(4-2^{x^{2}}\right) d x
$$

Then $\frac{d I}{d a}=0$ when a is what value?
[STEP I 2014 Q3]
The numbers a and b, where $b>a \geq 0$, are such that

$$
\int_{a}^{b} x^{2} d x=\left(\int_{a}^{b} x d x\right)^{2}
$$

(i) In the case $a=0$ and $b>0$, find the value of b.
(ii) In the case $a=1$, show that b satisfies

$$
3 b^{3}-b^{2}-7 b-7=0
$$

Show further, with the help of a sketch, that there is only one (real) value of b that satisfies the equation and that it lies between 2 and 3.
(iii) Show that $3 p^{2}+q^{2}=3 p^{2} q$, where $p=b+a$ and $q=b-a$, and express p^{2} in terms of q. Deduce that $1<b-a \leq \frac{4}{3}$

