Areas Under Curves

Consider our previous example $\int_{1}^{5} 4 x^{3} d x$. This definite integral gives the area bounded by the curve and the lines $x=1$ and $x=5$.

The definite integral $\int_{\boldsymbol{b}}^{\boldsymbol{a}} \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}$ gives the area between a positive curve $y=f(x)$, the x-axis, and the lines $x=a$ and $x=b$.

Example

Find the area of the finite region between the curve with equation $y=20-x-x^{2}$ and the x-axis.

Test Your Understanding

Figure 2
The finite region R, as shown in Figure 2, is bounded by the x-axis and the curve with equation

$$
y=27-2 x-9 \sqrt{ } x-\frac{16}{x^{2}}, \quad x>0
$$

The curve crosses the x-axis at the points $(1,0)$ and $(4,0)$.
(c) Use integration to find the exact value for the area of R.

Extension

[MAT 2007 1H] Given a function $f(x)$, you are told that

$$
\int_{0}^{1} 3 f(x) d x+\int_{1}^{2} 2 f(x) d x=7 \int_{0}^{2} f(x) d x+\int_{1}^{2} f(x) d x=1
$$

It follows that $\int_{0}^{2} f(x) d x$ equals what?

[MAT 2011 1G]

A graph of the function $y=f(x)$ is sketched on the axes below:
What is the value of $\int_{-1}^{1} f\left(x^{2}-1\right) d x$?

