Definite Integral

The most useful use of integration is that it finds the area under a graph. Before we do this, we need to understand how to find a definite integral.

Examples

1. $f(x)=4 x^{3}$
2. $\int_{-3}^{3} x^{2}+1 d x=$
3. Given that P is a constant and $\int_{1}^{5}(2 P x+7) d x=4 P^{2}$, show that there are two possible values for P and find these values.

Extension

1. [MAT 2009 1A] The smallest value of

$$
I(a)=\int_{0}^{1}\left(x^{2}-a\right)^{2} d x
$$

as a varies, is what?

2. [MAT 2015 1D] Let

$f(x)=\int_{0}^{1}(x t)^{2} d t$ and $g(x)=\int_{0}^{x} t^{2} d t$
Let $A>0$. Which of the following statements are true?
A) $g(f(A))$ is always bigger than $f(g(A))$
B) $f(g(A))$ is always bigger than $g(f(A))$
C) They are always equal.
D) $f(g(A))$ is bigger if $A<1$, and $g(f(A))$ is bigger if $A>1$.
E) $g(f(A))$ is bigger if $A<1$, and $f(g(A))$ is bigger if $A>1$.

