Lower 6 Chapter 13

Integration

Course Structure

1. Find y given $\frac{d y}{d x}$
2. Evaluate definite integrals, and hence the area under a curve.
3. Find areas bound between two different lines.

8 Integration	8.1	Know and use the Fundamental Theorem of Calculus	Integration as the reverse process of differentiation. Students should know that for indefinite integrals a constant of integration is required.
	8.2	Integrate x^{n} (excluding $n=-1$) and related sums, differences and constant multiples.	For example, the ability to integrate expressions such as $\frac{1}{2} x^{2}-3 x^{-\frac{1}{2}}$ and $\frac{(x+2)^{2}}{x^{\frac{1}{2}}}$ is expected. x Given $\mathrm{f}^{\prime}(x)$ and a point on the curve, Students should be able to find an equation of the curve in the form $y=\mathrm{f}(x)$.
8 Integration continued	8.3	Evaluate definite integrals; use a definite integral to find the area under a curve and the area between two curves	Students will be expected to be able to evaluate the area of a region bounded by a curve and given straight lines, or between two curves. This includes curves defined parametrically. For example, find the finite area bounded by the curve $y=6 x-x^{2}$ and the line $y=2 x$ Or find the finite area bounded by the curve $y=x^{2}-5 x+6$ and the curve $y=4-x^{2}$.

Integrating x^{n} terms

Integration is the opposite of differentiation.

Consider:
If $\frac{d y}{d x}=3 x^{2}$, what could $f(x)$?

Examples

Find y when:

1. $\frac{d y}{d x}=4 x^{3}$
2. $\frac{d y}{d x}=x^{5}$
3. $\frac{d y}{d x}=3 x^{\frac{1}{2}}$
4. $\frac{d y}{d x}=\frac{4}{\sqrt{x}}$
5. $\frac{d y}{d x}=5 x^{-2}$
6. $\frac{d y}{d x}=4 x^{\frac{2}{3}}$
7. $\frac{d y}{d x}=10 x^{-\frac{2}{7}}$

Test Your Understanding

Find $f(x)$ when:

$$
f^{\prime}(x)=2 x+7
$$

$$
f^{\prime}(x)=x^{2}-1
$$

$f^{\prime}(x)=\frac{2}{x^{7}}$
$f^{\prime}(x)=\sqrt[3]{x}=$
$f^{\prime}(x)=33 x^{\frac{5}{6}}$

