Lower 6 Chapter 13

Integration

Course Structure

- 1. Find y given $\frac{dy}{dx}$
- 2. Evaluate definite integrals, and hence the area under a curve.
- 3. Find areas bound between two different lines.

8 Integration	8.1	Know and use the Fundamental Theorem of Calculus	Integration as the reverse process of differentiation. Students should know that for indefinite integrals a constant of integration is required.
	8.2	Integrate x^n (excluding $n = -1$) and related sums, differences and constant multiples.	For example, the ability to integrate expressions such as $\frac{1}{2}x^2 - 3x^{-\frac{1}{2}}$ and $\frac{(x+2)^2}{\frac{1}{x^2}}$ is expected. x Given $f'(x)$ and a point on the curve, Students should be able to find an equation of the curve in the form $y = f(x)$.
8 Integration continued	8.3	Evaluate definite integrals; use a definite integral to find the area under a curve and the area between two curves	Students will be expected to be able to evaluate the area of a region bounded by a curve and given straight lines, or between two curves. This includes curves defined parametrically. For example, find the finite area bounded by the curve $y = 6x - x^2$ and the line $y = 2x$ Or find the finite area bounded by the curve $y = x^2 - 5x + 6$ and the curve $y = 4 - x^2$.

Integrating x^n terms

Integration is the opposite of differentiation.

Consider:

If
$$\frac{dy}{dx} = 3x^2$$
, what could $f(x)$?

Examples

Find y when:

$$1. \ \frac{dy}{dx} = 4x^3$$

$$2. \ \frac{dy}{dx} = x^5$$

$$3.\frac{dy}{dx} = 3x^{\frac{1}{2}}$$

$$4. \frac{dy}{dx} = \frac{4}{\sqrt{x}}$$

$$5.\frac{dy}{dx} = 5x^{-2}$$

$$6. \frac{dy}{dx} = 4x^{\frac{2}{3}}$$

$$7. \frac{dy}{dx} = 10x^{-\frac{2}{7}}$$

Test Your Understanding

Find f(x) when:

$$f'(x) = 2x + 7$$

$$f'(x) = x^2 - 1$$

$$f'(x) = \frac{2}{x^7}$$

$$f'(x) = \sqrt[3]{x} =$$

$$f'(x) = 33x^{\frac{5}{6}}$$